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 الملخص

اذج  لتطوير عدة نم والتي هي إحدى طرق الذكاء الصناعياستخدام طريقة الشبكات العصبية الصناعيةتم 
  . للكمرات المسلحة العميقةبغرض تخمين قوة القص القصوى

. استخدمت في هذه الدراسة قاعدة بيانات واسعة لتجارب مختبريه تم تجميعها بعناية من دراسات سابقة
 كمرة مسلحة عميقة ذات خرسانة عادية 161 المستخدمة على تجارب مختبريه لعدد تلبيانااحتوت قاعدة ا
  . كمرة مسلحة عميقة ذات خرسانة عالية المقاومة42المقاومة وعدد 

تم تدريب النماذج المطورة على تخمين مقاومة القص القصوى باستخدام قاعدة البيانات بعد مرورها بعدة 
  .دقيقمراحل من المعالجة والت

تم اعتماد عدد سبعة متغيرات كمدخلات ، لسابقة التي نشرت في هذا الموضوعا من خلال دراسة الأبحاث
أما المخرجات ،  المقاومةةالعادية والعالي الكمرات ذات الخرسانة الحالتين  كلا فيلنموذج الشبكات العصبية

   . في الحالتينفكانت مخرج واحد هو قوة القص القصوى للكمرات
لبناء الشبكة العصبية     feed forward back propagation  دريب الشبكة العصبية تم استخدام تقنيةلت

تم تحديد الشكل المعماري للشبكة العصبية المناسبة والذي ، المطلوبة وباستخدام طريقة المحاولة والخطأ
وطبقتين مخفيتين كل منهما  ، neuronsطبقة المدخلات وبها سبعة خلايا عصبية ، احتوى على أربعة طبقات

 كلا الحالتين الخرسانة العادية والخرسانة عالية فيوطبقة المخرجات وبها خلية واحدة وذلك   بها خمسة خلايا
 .المقاومة

قوة القص المخمنة  إلي  قوة القص النهائية لكمرات مفحوصة سابقا  النسبة بينأظهرت عملية التدريب أن
 في حالة 1.002فى حالة الخرسانة عادية المقاومة وتساوى 1.04لمطورة تساوى بواسطة الشبكة العصبية ا
   .  الخرسانة عالية المقاومة

 فكانت (ACI)قورنت هذه القيم مع قيم لكمرات مماثلة محسوبة باستخدام معادلات معهد الخرسانة الأمريكي  
هذه المقارنة . لخرسانة العالية المقاومة في حالة ا1.228 في حالة الخرسانة العادية و 2.78:يليالقيم كما 

  .تظهر مدى قوة الشبكات العصبية التي تم تطويرها في تخمين قوة القص القصوى للشبكات العصبية
كل علي حده علي ) المتغيرات(استخدمت أيضا الشبكات العصبية المطورة في إجراء دراسة لتأثير المدخلات 

 تعطي التأثير الأكبر علي  shear span to depth ratio أن وقد لوحظ) قوة القص القصوى(المخرجات 
 تحمل الضغط العامل الآخر الذي يؤثر بشكل فعال علي قوة القص القصوى هو قوة وقوة القص القصوى

    .للخرسانة
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Abstract
 

 I

ABSTRACT 
 

The artificial neural networks (ANN)  was used to develop a number of models 

in order to predict the ultimate shear strength of reinforced concrete deep 

beams for both normal and high concrete compressive strength. In this study a 

large number of experimental results database was collected carefully from 

previous studies. This database contained 161 and 42 experimental results for 

normal and high strength respectively. 

From the performed literature review a number of 7 variables were identified  

as input parameters for the ANN model for both normal and high strength 

concrete, whereas the output parameter was the ultimate shear strength. 

The feed forward back propagation neural network was used to build up the 

required model.  Using the trial and error technique  the topology of the neural 

networks was obtained.  

The ANN model was found to successfully  predict the ultimate shear strength 

of deep beams within the range of the considered input parameters. The 

average ratio of the experimental shear strength to predicted shear strength 

using the ANN model is 1.04 for normal strength concrete and 1.002 for high 

strength concrete. The ANN shear strength predicted results were also 

compared to those obtained using the American Concrete Institute (ACI) code  

318.02. The results show that ANN have strong potential as a feasible tool for 

predicting the ultimate shear strength of both normal and high strength RC 

deep beams within the range of input parameters. 

The trained neural network model was used to perform a parametric study to 

evaluate the effect of the input parameters on  the utilized ultimate shear 

strength of deep beams . 
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1.  INTRODUCTION 

1.1 BACKGROUND 

Reinforced concrete (RC) deep beams are used for load distribution in a wide 

range of structures; for example in tall buildings, offshore gravity structures, as 

transfer girders, pile caps, folded plates, and foundation walls, also shear walls 

are considered as  cantilever deep beam. Deep beams are often located on the 

perimeter of framed structures where they provide stiffness against horizontal 

loads.  

 

By increasing the depth of the beam while keeping the span length constant, the 

member becomes so stiff that the applied load is effectively carried through 

tension and compression zones, see Fig 1.1, rather than by bending and shear. 

This can be referred to as membrane action although historically such 

members are known as deep beam [29,71, 74]. 

 

The structural behavior of deep beams differs from that of shallow beams 

because of the small ratio between shear span and the depth. In contrast to 

shallow beams, the response is characterized by nonlinear strain distribution 

even in the elastic range [7]. 

 

The ultimate shear strength of deep beams can be predicted using various 

methods. These methods comprise the ACI code and Strut-and-Tie model 

which is also included on the ACI 318-02 Code. 
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(a) Deep beam[74 ].  

(b) Strut-and –tie behavior  

(membrane action) [74 ]. 

 
 (c) Tension and compression zones [71]. 

Figure  1-1: Deep Beam (Short Beam) 

1.2  NEURAL NETWORKS IN CIVIL ENGINEERING 

Artificial Neural Networks (ANN) are one of the artificial intelligence 

methods, they are widely used to approximate complex systems that are 

difficult to model using conventional modeling techniques such as 

mathematical modeling [26,35,41]. They are applied  in several civil 

engineering problems such as  structural, geotechnical, management etc.  

1.3 PROBLEM STATEMENT  

The basic problem of deep beams emerges from the fact that  a number of 

parameters affecting shear behavior have led to a limited understanding of 

shear failure mechanism and predicting of exact shear strength [60]. Although 

there were a large number of researches carried out, there is no agreed rational 

procedure to predict the strength of reinforced concrete deep beams  [8,7]. This 
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is mainly due to the highly nonlinear behavior associated with the failure of the 

reinforced concrete beams. 

Ashour, et al [8] mentioned that the design of deep beams has not yet been 

covered by the British Standards Institution (BS8110). He mentioned that 

comparisons between experimental results and predictions from other codes, 

such as ACI, show poor agreement in prediction of ultimate shear strength. 

Therefore, the author believes that there is still a strong need to introduce the 

ability to predict the ultimate shear strength of deep beams.   

1.4 RESEARCH OBJECTIVES  

The objectives of this study are summarized as follows: 

 Develop a neural network model which can predict the ultimate shear 

strength of deep beams. 

 Carry out a parametric study using the trained neural network to obtain the 

significance of each parameter affecting the shear strength of deep beams. 

 Compare the predicted strength of deep beams using neural networks with 

those calculated from ACI 318-02 equations. 

1.5 RESEARCH METHODOLOGY 

The objectives of this study will be achieved through performing the following 

tasks: 

 Conduct a literature survey to obtain the necessary researches in strength 

and behavior of RC deep beams .This will enhance the understanding of  

the physical problem. The Islamic University-Gaza (IUG) library, the 

Internet facilities and the connections with people abroad have been used to 

carry out the literature survey. 

 Conduct a literature survey on the use of  artificial neural networks (ANN) 

in civil engineering applications, paying special attention on the use of 

ANN in deep beams. 
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 Obtain as much experimental test results as possible from the previous 

reliable studies. These experimental results are used for training the neural 

network model. 

 MATLAB software toolbox of the neural networks was used in modeling a 

neural network 

1.6 THESIS LAYOUT  

The current study was divided into six chapters as follows : 

Chapter one is an introductory chapter defines the problem statement, the 

objectives of this study, the methodology and an overview of this study. 

Chapter two presents the definitions of deep beams, their problem, behavior, 

strength, and the previous studies performed. 

Chapter three deals with the fundamentals of ANN showing their definition, 

the terminology used, as well as the advantages and disadvantages of them. The 

mechanism of ANN, their architecture types, algorithms used for training them 

are also reviewed. Finally, several applications of ANN used by researchers in 

civil engineering are included.    

Chapter four explains the modeling of deep beams using artificial neural 

networks. This chapter also discusses the collection stage of the experimental 

data, pre processing of the training data, training and the performance of the 

developed model .  

Chapter five presents a parametric study in which the influence of each 

parameter on the ultimate strength of deep beams in both cases the normal and 

high concrete compressive strength. 

Chapter six presents conclusions and recommendations for future work. 
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2.  STRENGTH AND BEHAVIOR OF DEEP BEAMS 

2.1 INTRODUCTION 

A deep beam is a beam in which a significant amount of the load is transferred 

to the supports by a compression thrust joining the load and the reaction [2]. 

 

 The transition from reinforced concrete shallow beam behavior to that of deep 

beam is imprecise. For example, while the ACI code [10], CEB-FIP model 

code [11] and CIRIA Guide 2 [12] use the span/depth ratio limit to define RC 

deep beams, the Canadian code [13] employs the concept of shear span/ depth 

ratio. CEB-FIP model code treats simply supported and continuous beams of 

span/depth ratios less than 2 and 2.5, respectively, as deep beams [8]. 

 

ACI code 318-95 classifies the beam as a deep beam for flexural if the clear-

span/overall-depth ratio is < 1.25 for simply supported beams and 2.5 for 

continuous beams and as deep beams for shear if the clear-span /effective-

depth ratio is <5 for simply supported beams loaded on one face and supported 

on the opposite face so that compression struts can develop between loads and 

supports [7].  

 

ACI code 318-02 defines deep beams as members loaded on one face and 

supported on the opposite face so that compression struts can develop between 

the loads and the supports, and have either: clear spans equal to or less than 

four times the overall member depth; or regions loaded with concentrated loads 

within twice the member depth from the face of the support [6]. 
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The span–to-depth ratios in the definition of deep beams in the 1999 and earlier 

codes were based on papers published in 1946 and 1953. The definitions of 

deep beams given in clause 10.7.1 and 11.8.1 of these earlier codes were 

different from each other and different from the 2002 code definition that based 

on D- region behavior [6]. 

 

The Euro code defines a beam as a deep beam if the cross sectional depth to the 

effective span length is greater than the following limits [9], see Fig 2.1 : 

• for simple beam               5.0/ >elh  

• for end span of continuous beams  4.0/ >elh  

• for inner spans of continuous beams  3.0/ >elh  

• for cantilever beams    0.1/ >elh  

    Where: 

    h = depth of the beam. 

    el = effective span length. 

 

Deep beams can be classified according to their concrete compressive strength 

as normal or high. The high strength concrete is a type of high performance 

concrete. ACI defines a high strength concrete as concrete that has a specific 

compressive strength for design of 41MPa (6000psi) or greater, other countries 

use a higher compressive strength in their definitions of high strength concrete 

with 48MPa (7000psi) minimum [78,79].  

 

A comparison between deep beams and ordinary beams is shown in table 2.1 

[3]: 
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Table  2-1: Comparison between Deep Beams and Ordinary Beams 

No. Deep Beam Ordinary beam 

1 Plane section before bending does 
not remain plane after bending. 

Plane section before bending remains 
plane after bending. 

2 Shear deformations become 
significant compared to pure 
flexure. 

Shear deformation is neglected. 

3 The stress block is non linear even 
at elastic stage. 

The stress block can be considered 
linear at elastic stage. 

4 It is subjected to two dimensional 
state of stress. 

It is subjected to one dimensional 
state of stress. 

5 The resulting strain is non linear. The strain is linear. 

 

2.2 PROBLEM OF DEEP BEAMS 

The behavior and design of reinforced concrete  beams in shear remains an area 

of concern for structural engineers due to the sudden and brittle failure of 

reinforced concrete beams dominated by shear action and due to the lack of 

rational design equations in building codes. The shear failure modes, the 

resisting mechanisms at cracked stages, and the role of various parameters are 

presently under discussion and subject to debates among researchers [40]. 
 

Although there were a large number of researches carried out, there is no 

agreed rational procedure to predict the strength of RC deep beams. This is 

mainly due to the highly nonlinear behavior associated with the failure of the 

reinforced concrete beams [7,8]. 

 

Unfortunately, no accurate theory exists for predicting the ultimate shear 

strength of deep reinforced concrete beams. Also the great number of 

parameters that affect the beam strength has led to a limited understanding of 

shear failure. In addition of existing several equations, none of them produce an 

accurate result [7]. Neural networks were successfully used by many researches 
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as a molding technique. Therefore, this thesis aims at using the neural networks 

technique in studying and predicting the ultimate shear strength of deep beams. 

2.3 BEHAVIOR OF DEEP BEAMS 

In deep beams a significant amount of load is carried to supports by a 

compression thrust joining the load and the reaction. This compression in the 

diagonal direction combined with the tension along the beam bars constitute 

the basis for the strut-and-tie model. This tied arch action is recognized as the 

force-transferring mechanism of deep beams. The failure of a deep beam may 

occur because of crushing of a compression strut or loss of a beam bar 

anchorage [54]. 

 

In general, deep beams are governed by shear, rather than flexural. A large 

amount of compressive forces are directly transferred to supports by “Arch 

action". A linear elastic analysis is only valid while the deep beam remains un-

cracked. However in practice tensile cracks develop in most deep beams 

between one-third and one-half of the ultimate loads. Therefore, tension 

reinforcement governs the design of the deep beams. Since the main loads and 

reactions act in the plane of the member, a state of plane stress in the concrete 

can be calculated approximately [4]. 

 

The basic parameters that control the shear strength of deep beams, based on 

previous research works as in [7], are shown in Fig. 2.1. These parameters are: 

The effective span of beam ( el ), width of beam (b ), effective depth of beam 

( d ), shear span (a), cylinder compressive strength of concrete ( \
cf ), yield 

strength of horizontal steel ( yhf ), yield strength of vertical steel ( yvf ), 

reinforcement ratio of horizontal steel ( hρ ), reinforcement ratio of total 

horizontal tensile steel ( tρ ),  and reinforcement ratio of transverse steel ( vρ ). 
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Figure  2-1: Basic parameters for shear strength prediction of simply supported deep beam: 
(a) Deep beam; (b) Cross section[7]. 

 

In addition to those listed above, there are more parameters that are also critical 

in deep beam behavior. These are anchorage of longitudinal steel into supports 

and size of bearing and loading areas [7]. Tests have shown that vertical shear 

reinforcement is more effective than horizontal shear reinforcement [6]. Crack 

shape in deep beam would almost be vertical or follow the direction of the 

compression trajectories, with the beam almost shearing off from the support in 

a total shear failure. Hence, in the case of deep beams, horizontal reinforcement 

to resist the vertical crack is needed throughout the height of the beam, in 

addition to vertical shear reinforcement along the span. 

 

To resist the high tensile stresses at the lower regions of the deep beam, it is 

needed to concentrate horizontal reinforcing bars in the lower fiber. The 

allowable concrete shear resistance cV of the deep beam is higher than of 

ordinary beam because of the great ratio of depth/ span [3].  

2.4 REVIEW OF PREVIOUS STUDIES 

Siao [51] used the  strut-and-tie approach, to examine the ability of it in the 

analysis of shear strength of deep beams with web openings. The results 

showed that it could be used. On the other  hand strut-and-tie model can be 
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applied to beams with rectangular openings whose horizontal dimensions 

ranges from 0.1 to 0.4 times the clear span and vertical dimension ranges from 

0.1 to 0.4 times the beam height, moreover when the opening is small, a more 

accurate prediction is obtained, this aspect has not been conclusively dealt with 

by earlier researchers . 

 

 Goh [42] used the artificial neural network ANN to predict the ultimate shear 

strength of deep beams. The neural network predictions were more reliable 

than predictions using other conventional methods such as ACI and Strut-and-

Tie model. 

 

 Tan et al [52] studied the variations of the effective span and shear span on the 

high strength concrete deep beams. 

 

 Foster and Gilbert [53] studied the crack patterns and failure mechanisms of 

high strength concrete deep beams by the aid of experimental data. 

 

 Tan and Lu [54] investigated the shear behavior of large reinforced concrete 

deep beams experimentally and a comparison with different codes of practice 

was made. 

 

  Ashour and Rishi [55] tested reinforced concrete continuous deep beams with 

openings, the modes of failure were observed, depending on the position of the 

web openings. 

 

Hwang and et al [56] predicted the shear strength of deep beams using strut-

and–tie model in order to improve the current deep beam design procedure. 

 

 Teng et al [57]investigated experimentally the shear strength of concrete deep 

beams under fatigue loading, the investigation showed that the relevant ACI 

equations can be applied to deep beams under fatigue or repeated loading once 
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the properties of the concrete and reinforcement are adjusted to take account of 

the effect of fatigue loading.  

 

Oh and Shin [60] tested reinforced high strength deep beams to determine their 

diagonal cracking and ultimate shear capacities. 

 

Sanad and Saka [7] used the artificial neural network in predicting the ultimate 

shear strength of reinforced-concrete deep beams and the results obtained were 

compared with the experimental values and with those determined from the 

ACI code method, strut –and-tie method, and Mau-Hsu method. It was clear 

that the performance of the neural network in predicting the shear strength is 

much more accurate than the methods considered. It is noticed that, although 

the average ratio of actual and predicted shear strength was 2.08 in the ACI 

code method, the same ratio is only 0.97 in the neural network. 

 

 Aguilar et al [59] evaluated experimentally the design procedure for the shear 

strength of deep reinforced concrete beams, the behavior of the beep beams 

was described in terms of cracking pattern, load-versus-deflection response, 

failure mode, and strain in steel reinforcement and concrete . 

 

Zararis [59] described theoretically the shear compression failure in reinforced 

concrete deep beams. 

 

 Ashour et al [8] performed an empirical modeling of shear strength of 

reinforced concrete  deep beam by genetic programming (GP), which  is a new 

form of artificial intelligence, good agreement between the model predictions 

and experiments has been achieved. The GP model predicts the following 

behavior between the shear strength and the influencing parameters: 

• The shear span to depth and main longitudinal bottom reinforcement 

ratios have the most significant effect on the shear strength of RC deep 

beams. 
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• The shear strength is inversely proportional to the shear span-depth 

ratio; the higher the shear span to depth ratio, the less the shear strength. 

• The shear strength increases with the increase of the main longitudinal 

bottom reinforcement ratio up to a certain limit beyond which no 

improvement can be achieved. 

• The effect of the beam span to depth ratio and web reinforcement on the 

shear strength is very small.  

2.5 PREDICTION OF THE ULTIMATE SHEAR STRENGTH OF DEEP 

BEAMS  

The ultimate shear strength of deep beams can be predicted using various 

methods. Some of these methods are explained in the following subsections: 

2.5.1 Shear Strength of Deep Beams from ACI 2002 Code 

According to the ACI 318-02, deep beams shall be designed either taking into 

account nonlinear distribution of strain, or by using Appendix A which deals 

with the Strut-and-Tie model. Lateral buckling shall be considered. While the 

critical section for calculating the factored shear force Vu is taken at distance d 

from the face of the support in normal beams, the shear plane in deep beams is 

considerably steeper in inclination and closer to the support [50].  

 

The factored shear force Vu has to satisfy the following condition: 

 

                ( )dbfV wcu
'10φ≤  (2.1)

              
 
Where:  

cf '   = square root of specified compressive strength of concrete, (psi) 

wb  = web width, (in.) 
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d = distance from extreme compression fiber to centroid of longitudinal    

tension reinforcement, but need not be less than 0.80h for circular sections and 

pre-stressed members, (in.) 

 

If the condition is not satisfied, the section has to be enlarged .The strength 

reduction factor 75.0=φ . The present ACI Code does not give guidance on 

determining the shear value Vu of the plain concrete or the maximum 

permissible value, although the shear capacity of the plain concrete in the deep 

beam has to be considerably higher than in normal beams as previously 

discussed. A value of  dbfV wcc
'0.6≤  

can be used for deep beams as compared to the limit value of dbfV wcc
'5.3≤   

in normal beams.  

 

In the strut-and –tie approach given in section 6.11 of the Code, compressive 

force in the strut and tensile force in the ties are used for determining the 

necessary reinforcement in lieu of the approach presented in this section. 

 

The normal shear resisting force cV  of the plain concrete can be taken as 

 

dbfdb
M

dV
wf

dV
M

V wcw
u

u
c

u

u
c

\\ 6)250009.1)(5.25.3( ≤+−= ρ
 

(2.2a)

 

where 5.25.25.30.1 ≤⎟
⎠
⎞⎜

⎝
⎛−< dV

M
u

u .This factor is a multiplier of the basic 

equation for cV  in normal beams to account for the higher resisting capacity of 

deep beams. If some minor unsightly cracking is not tolerated, the designer can 

use  

dbfV wcc
\2=

 (2.2b)

 



www.manaraa.com

Strength and Behavior of Deep Beams 
 

14 

When the factored shear uV exceeds cVφ , shear reinforcement has to be provided 

such that ( )scu VVV +≤ φ , where sV  is the force resisted by the shear 

reinforcement: 
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(2.3)

where: 

 vA = total area of vertical reinforcement spaced at vs in the horizontal direction 

at both faces of the beam; 

yhA = total area of horizontal reinforcement spaced at hs in the vertical direction 

at both faces of the beam . 

 

 

Maximum spacing 
5
dsv ≤  or 12 in.         

                                                          whichever  is smaller 
(2.4a)

Maximum  spacing
5
dsh ≤    or   12  in  

 
(2.4b)

         and 

 

minimum hyh bsA 0015.0=  

minimum vv bsA 0025.0=  
 

 

The shear reinforcement required at the critical section must be provided 

throughout the deep beams.  

In the case of continuous deep beams, because of the large stiffness and the 

negligible rotation of the beam section at the supports, the continuity factor at 

the first interior support has a value close to 1.0. Consequently, the same 

reinforcement for shear can be used in all spans for all practical purpose if all 

the spans are equal and similarly loaded [50]. 



www.manaraa.com

Strength and Behavior of Deep Beams 
 

15 

2.5.2 Strut-and-Tie Model from ACI 2002 

The strut-and-tie model STM has been introduced in the new AASHTO LRFD 

Specifications (1994), which was its first appearance in a design specification 

in the US. It was also included in ACI 318-02 Appendix A [14].  

 

The Strut-and-Tie is a unified approach that considers all load effects (Bending 

moment, normal force, shear force, and tension force) simultaneously. It is a 

powerful tool for the design of what is known as “discontinuity” or “disturbed” 

regions in reinforced and pre stressed concrete structures. These regions are 

normally referred to as the D-regions. These are regions where a complex state 

of stress and strain develops. Examples of D-regions include corbels, deep 

beams, joints, walls with openings, anchorage zones and so on, see Fig 2.2. 

 
Figure  2-2: D-regions (shaded areas) with nonlinear strain distribution due to (a) 

Geometrical discontinuities.  (b) Statically and/or geometrical discontinuities [5,6]. 
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The STM idealizes the D-region by a system of truss members that serve to 

carry the load to the boundaries of the D-region. The truss model consists of 

compression struts (concrete) and tension ties (reinforcing bars). So this model 

provides a rational approach by representing a complex structural member with 

an appropriate simplified truss models. Although there is no single, unique 

STM for most design situations encountered, there are, however, some 

techniques and rules, which help the designer develop an appropriate model [5, 

6,14]. 

The deep beam stress and its Strut-and-Tie model is shown in Fig 2.3. 

 

 
 

(a) Stress trajectories (b)Truss model 
  

  
 (c) Crack pattern in test  (d) Simplified truss 

Figure  2-3: Deep beam stresses and its STM model [14] 

 

Strut –and-tie model design procedure according to ACI 318-02 :  

It shall be permitted to design structural concrete members, or D-region in such 

members, by modeling the member or region as an idealized truss. The strut-

and-tie model shall be in equilibrium with the applied loads and the reactions. 

The angle between the axes of any strut and tie entering a single node shall not 

be taken as less than 25 degrees. Design of struts, ties, and nodal zones shall be 

on 

un FF ≥φ  
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where: 

Fu is the force in a strut or tie, or the force acting on one face of a nodal zone, 

due to the factored loads, Fn is the nominal strength of the strut, tie, or nodal 

zone; and Φ is the strength reduction factor 0.75. 

Strength of Struts 

The nominal compressive strength of a strut without longitudinal reinforcement 

shall be taken as the smaller value of 

ccuns AfF =  

at the two ends of the strut, where cA is the cross- sectional area at one end of 

the strut, and cuf is the smaller of (a) and (b): 

(a)- The effective compressive strength of the concrete in the strut shall be 

taken as  
'85.0 cscu ff β=  

 

(b)- The effective compressive strength of the concrete in a nodal zone shall 

not exceed the value given by:  
'85.0 cncu ff β=  

where the value of nβ  is given in Table 2.2. 

The use of compression reinforcement shall be permitted to increase the 

strength of a strut. Compression reinforcement shall be properly anchored, 

parallel to the axes of the strut, located within the strut. The strength of a 

longitudinally reinforced strut is: 
''

ssccuns fAAfF +=  

 

Strength of ties 

 The nominal strength of a tie shall be taken as  

 ( )psepsystnt ffAfAF ∆++=  

where ( )pse ff ∆+  shall not exceed pyf  and psA is zero for non pre stressed 

members. 
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Table  2-2: Stress Limits and Strength Reduction Factors According to ACI 318-02 
Appendix A [1,7] 

Stress Limits, cuf   
 Struts: '85.0 cscu ff β=  
where: 00.1=sβ for prismatic struts in un cracked compression zones 

40.0=sβ for struts in tension members 
75.0=sβ struts may be bottle shaped and crack control reinforcement is 

included 
60.0=sβ struts may be bottle shaped and crack control reinforcement is 

not included 
60.0=sβ for all other cases 

='
cf specified concrete compressive strength 

Note: Crack control reinforcement requirement is 003.0sin ≥∑ ivi γρ , where 

 = steel ratio of the i-th layer of reinforcement crossing the strut under 

review, and = angle between the axis of the strut and the bars. 
 Nodes: '85.0 cncu ff β=  

 
where: 00.1=nβ when nodes are bounded by struts and/or bearing areas 

80.0=nβ when nodes anchor only one tie 
60.0=nβ when nodes anchor more than one tie 

Strength Reduction Factors, φ  
 75.0=φ  for struts, ties, and nodes 
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3. ARTIFICIAL NEURAL NETWORKS 

3.1 INTRODUCTION  

Artificial Neural Networks (ANN) are widely used to approximate complex 

systems that are difficult to model using conventional modeling techniques 

such as mathematical modeling [26,35,41]. They are applied in several civil 

engineering problems structural, geotechnical, management etc.   

 

This chapter presents the fundamentals of ANN showing the history, definition, 

terminology used, as well as advantages and disadvantages. The mechanism of 

ANN, architecture classes, algorithms used for training are also reviewed. 

Finally, several applications of ANN used in civil engineering are included.  

3.2 DEFINITION OF ARTIFICIAL NEURAL NETWORKS 

An artificial neural network is an assembly (network) of a large number of 

highly connected processing units, the so-called nodes or neurons. The neurons 

are connected by unidirectional communication channels (connections). The 

strength of the connections between the neurons is represented by numerical 

values which normally are called weights. Knowledge is stored in the form of a 

collection of weights. Each neuron has an activation value that is a function of 

the sum of inputs received from other nodes through the weighted connections 

[28,41]. 

Also ANN can be defined as  a form of artificial intelligence, which by means 

of their architecture, attempt to simulate the biological structure of the human 

brain and nervous system [22,26]. 
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3.3 TERMINOLOGY USED IN ARTIFICIAL NEURAL NETWORK 

The definition of the terms used in Figure 3.1 is presented in the following 

paragraphs: 

 

Inputs First Hidden 
layer

Second 
Hidden Layer

Output 
LayerInputs First Hidden 

layer
Second 
Hidden Layer

Output 
Layer

 

Figure  3-1: Typical Structure of ANN[21,35] 

 

Neuron (artificial): A simple model of a biological neuron used in neural 

networks to perform a small part of some overall computational problem. It has 

inputs from other neurons, with each of which is associated a weight - that is, a 

number which indicates the degree of importance which this neuron attaches to 
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that input. It also has an activation function, and a bias. It is the processing 

element in ANN and they are called nodes also [23,30]. 

 

Weight: A weight, in an artificial neural network, is a parameter associated 

with a connection from one neuron, M, to another neuron N. It determines how 

much notice the neuron N pays to the activation it receives from neuron M 

[30]. 

 

Input unit: An input unit -in a neural network- is a neuron with no input 

connections of its own. Its activation thus comes from outside the neural net 

[30].  

 

Output unit: An output unit in a neural network is a neuron with no output 

connections of its own. Its activation thus serves as one of the output values of 

the neural net [30]. 

 

Bias: In feed-forward and some other neural networks, each hidden unit and 

each output unit is connected via a trainable weight to a unit (the bias unit) that 

always has an activation level of -1[30].  

 

Epoch: In training a neural net, the term epoch is used to describe a complete 

pass through all of the training patterns. The weights in the neural net may be 

updated after each pattern is presented to the net, or they may be updated just 

once at the end of the epoch. Frequently used as a measure of speed of learning 

- as in "training was complete after x epochs"[30]. 

 

Hidden layer: Neurons or units in a feed forward net are usually structured 

into two or more layers. The input units constitute the input layer. The output 

units constitute the output layer. Layers in between the input and output layers 

(that is, layers that consist of hidden units) are termed hidden layers.  
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In layered nets, each neuron in a given layer is connected by trainable weights 

to each neuron in the next layer [30].  

 

Hidden unit / node: A hidden unit in a neural network is a neuron which is 

neither an input unit nor an output unit [30].  

A learning algorithm is a systematic procedure for adjusting the weights in 

the network to achieve a desired input/output relationship, i.e. supervised 

learning [26].  

 

Note: The most popular and successful learning algorithm used to train 

multilayer neural networks is currently the back-propagation routine [26]. 

3.4 ADVANTAGES AND DISADVANTAGES OF ARTIFICIAL 

NEURAL NETWORKS  

 Artificial neural networks have many advantages that made it increasingly 

used in several applications by many researchers. Some of these advantages 

can be summarized below: 

1- ANN are well suited to model complex problems where the relationship 

between the model variables is unknown [26]. 

 

2- Neural networks has the capability of producing correct or nearly correct 

outputs when presented with partially incorrect or incomplete inputs 

[28]. 

 

3- ANN do not need any prior knowledge about the nature of the 

relationship between the input/output variables, which is one of the 

benefits that ANN have compared with most empirical and statistical 

methods [26]. 
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4- ANN can always be updated to obtain better results by presenting new 

training examples as new data become available [26]. 

 

5- Artificial Neural Networks have the advantage that it gives you the 

output without the need to perform any manual work such as using 

tables, charts, or equations [22].   

 

6- It is often faster to use neural networks than a conventional approach 

[23]. 

 

7- Engineers often deal with incomplete and noisy data which is one area 

where ANN are most applicable [69]. 

 

8- ANN can learn and generalize form examples to produce meaningful 

solutions to problems [69]. 

 

9- Data presented for training ANN can be theoretical data, experimental 

data, empirical data based on good and reliable experience or a 

combination of these [69]. 

Although the artificial neural networks have advantages, on the other hand 

there are disadvantages. Some of these are listed below: 

 

1- The principal disadvantage being that they give results without being 

able to explain how they arrive at their solutions. Their accuracy 

depends on the quality of the trained data and the ability of the 

developer to choose truly representative sample inputs [62]. 

 

2- There is no exact available formula to decide what architecture of ANN 

and which training algorithm will solve a given problem. The best 

solution is obtained by trial and error. One can get an idea by looking at 

a problem and decide to start with simple networks; going on to 



www.manaraa.com

Artificial Neural Networks 
 

24 

complex ones till the solution is within the acceptable limits of error 

[35]. 

 

3- The individual relations between the input variables and the output 

variables are not developed by engineering judgment so that the model 

tends to be a black box or input/output table without analytical basis 

[63]. 

 

         The advantages appear to outweigh the disadvantages [63]. 

3.5 MECHANISM OF ARTIFICIAL NEURAL NETWORKS 

Briefly neural networks are composed of simple elements operating in parallel. 

The network function is determined largely by the connections between 

elements. We can train a neural network to perform a particular function by 

adjusting the values of the connections (weights) between elements. 

 

Commonly neural networks are adjusted, or trained, so that a particular input 

leads to a specific target output. Such a situation is shown below Fig 3.2. 

There, the network is adjusted, based on a comparison of the output and the 

target, until the network output matches the target.  

 

Figure  3-2: Neural Networks Concept [21]. 
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Batch training of a network proceeds by making weight and bias changes based 

on an entire set (batch) of input vectors. Incremental training changes the 

weights and biases of a network as needed after presentation of each individual 

input vector. Incremental training is sometimes referred to as "on line" or 

"adaptive" training. Today neural networks can be trained to solve problems 

that are difficult for conventional computers or human beings [29]. 

3.6 TYPES OF ARTIFICIAL NEURAL NETWORK  

Basically, neural networks can be classified according to their connection 

geometries. One of the simplest architectures is the layered feed-forward 

network [31]. 

3.6.1 Single-Layer Feed forward Networks 

In a layered neural network the neurons are organized in the form of layers. In 

the simplest form of a layered network, we have an input layer of source nodes 

that projects into an output layer of neurons (computation nodes), but not vice 

versa. In other words, this network is strictly a feed forward or cyclic type. It is 

illustrated in Fig. 3.3 for the case of nodes in both the input and output layers. 

Such a network is called a single-layer network, with the designation "single-

layer" referring to the output layer of computation nodes (neurons). We do not 

count the input layer of source nodes because no computation is performed 

there [18]. 
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Figure  3-3: Feed forward or acyclic network with a single layer of neurons [48]. 

3.6.2 Multilayer Feed forward Networks 

The second class of a feed forward neural network distinguishes itself by the 

presence of one or more hidden layers, whose computation nodes are 

correspondingly called hidden neurons or hidden units. The function of hidden 

neurons is to intervene between the external input and the network output in 

some useful manner Fig 3.4. 

 

The architecture graph in Fig 3.4 illustrates the layout of a multilayer feed 

forward neural network for the case of a single hidden layer. For brevity the 

neural network in Fig 3.4 is referred to as a 6-4-2 network because it has 6 

source neurons, 4 hidden neurons, and 2 output neurons. As another example, a 

feed forward network with m source nodes, h1 neurons in the first hidden layer, 

h2 neurons in the second hidden layer, and q neurons in the output layer is 

referred as an m-h1-h2-q [18].   

The neural network in Fig 3.4 is said to be fully connected in the sense that 

every node in each layer of the network is connected to every other node in the 

adjacent forward layer. If, however, some of the communication links (synaptic 

connections) are missing from the network, we say that the network is partially 

connected [18]. 
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3.6.3 Recurrent Networks 

A recurrent neural network distinguishes itself from a feed forward neural 

network in that it has at least one feedback loop. Recurrent neural networks 

(RNN) have a closed loop in the network topology. They are developed to deal 

with the time varying or time-lagged patterns and are usable for the problems 

where the dynamics of the considered process is complex and the measured 

data is noisy).  

 

 

Figure  3-4: Fully connected feed forward network[18,67]. 

 

The RNN can be either fully or partially connected. In a fully connected RNN 

all the hidden units are connected recurrently, whereas in a partially connected 

RNN the recurrent connections are omitted partially. For example, a recurrent 

network may consist of a single layer of neurons with each neuron feeding its 
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output signal back to the inputs of all the other neurons, as illustrated in the 

architectural graph in Fig 3. 5 [18,67]. 

 

Figure  3-5: Recurrent network with no self-feedback loops and no hidden neurons [48]. 

3.7 FUNCTIONS USED IN DEVELOPING ANN 

There are many types of functions used by ANN among which training and 

transfer functions are listed below: 

3.7.1 Training Functions 

The MATLAB toolbox now has four training algorithms that apply weight and 

bias learning rules, namely: Batch training function “trainb”, Cyclical order 

incremental training function “trainc”, Random order incremental training 

function “trainr”, and Sequential order incremental training function “trains”. 

 

All four functions present the whole training set in each epoch (pass through 

the entire input set) [21]. 
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3.7.2 Transfer (activation) Functions 

In neural networks, an activation function is the function that describes the 

output behavior of a neuron .They can be linear or nonlinear [21]. 

Three of the most commonly used functions are shown below in Fig 3.6. 

 

Hard-Limit Transfer Function 

 

Linear Transfer Function 

 

Log-Sigmoid Transfer Function 

 

Figure  3-6: Three of the most commonly used transfer functions[21] 

 

-The hard-limit transfer function shown Fig. 3.6 limits the output of the neuron 

to either 0, if the net input argument n is less than 0; or 1, if n is greater than or 

equal to 0. 

-Neurons of Linear Transfer Function shown Fig. 3.6 are used as linear 

approximations in “Linear Filters”. 

- The sigmoid transfer function shown in Fig. 3.6 takes the input, which may have any 

value between plus and minus infinity, and squashes the output into the range 0 to 1. 

This transfer function is commonly used in back propagation networks, in part 

because it is differentiable [21]. 
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3.8 ALGORITHMS USED FOR TRAINING ARTIFICIAL NEURAL 

NETWORK  

There are several types of neural networks according to the algorithms used in 

the training process. The following paragraphs presents some of these training 

algorithms: 

3.8.1 Back-propagation Neural Networks 

The most popular type of neural networks is the back propagation neural 

network (BP). Back-Propagation is a mathematical procedure that starts with 

the error at the output of a neural network and propagates this error backwards 

through the network to yield output error values for all neurons in the network.  

BP is a feed forward network that uses supervised learning to adjust the 

connection weights. In a feed forward network, the results of each layer are fed 

to each successive layer. A conventional BP uses three layers of nodes, but it 

can use more middle layers. The first layer, the input nodes, receives the input 

data (also called the middle layer or the hidden layer). The results of the first 

layer are passed to the next layer. This process is repeated for each layer until 

an output is generated. The difference between the generated output and a 

training set output is calculated. This difference is fed back to the network 

where it is used for connection weight readjustment by iteratively attempting to 

minimize the difference to within a predefined tolerance. The BP can learn 

many different output patterns simultaneously with dramatic accuracy [32,64].  

3.8.2 Radial Basis Neural Networks 

Radial Basis Functions are powerful techniques for interpolation in 

multidimensional space. A Radial Basis Function (RBF) is another type of 

feed-forward ANN Fig 3.7. Typically in a RBF network, there are three layers: 

one input, one hidden and one output layer. Unlike the back-propagation 

networks, the number of hidden layer can not be more than one. The hidden 

layer uses Gaussian transfer function instead of the sigmoid function. In RBF 
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networks, one major advantage is that if the number of input variables is not 

too high, then learning is much faster than other type of networks. However, 

the required number of the hidden units increases geometrically with the 

number of the input variables. It becomes practically impossible to use this 

network for a large number of input variables. 

 

The hidden layer in RBF network consists of an array of neurons that contains 

a parameter vector called a ‘radial center’ vector. The hidden layer performs a 

fixed non-linear transformation with non-adjustable parameters.  

 

The approximation of the input-output relation is derived by obtaining a 

suitable number of neurons in the hidden layer and by positioning them in the 

input space where the data is mostly clustered. At every iteration, the position 

of the radial centers, its width (variation) and the linear weights to each output 

neuron are modified. The learning is completed when each radial center is 

brought up as close as possible to each discrete cluster centers formed from the 

input space and the error of the network’s output is within the desired limit 

[32,34,67,68]. 

 

Figure  3-7: Architecture of radial basis function neural network.[68] 
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3.8.3 Hopfield Neural Networks 

Hopfield networks are the recurrent neural networks with no hidden units. The 

idea of this type of network is to get a convergence of weights to find the 

minimum value for energy function, just like a ball going down to the hill and 

stops when energy is converted to other form due to friction and other forces. 

Also it can be compared to the vortices in a river. Every neuron of the Hopfield 

net is connected to all other neuron but not to itself, so that the flow is not in a 

single direction. Even a node can be connected to itself in a way of receiving 

the information back through other neurons [47,66,67]. 

 

3.9 APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN 

CIVIL ENGINEERING 

Over the last few years, the use of artificial neural networks (ANN) has 

increased in many areas of engineering. Many researches in structural and 

geotechnical engineering have been carried to use ANN  in various topics, 

among them were W.P. Dias and S.P. Pooliyadda [24]; Lai and Serra [46];  Lee 

and Sterling [46]; W.M. Jenkins [25];  I.C. Yeh [27]. 

The following explains some of these researches:  

3.9.1 ANN Applications in Structural Engineering  

Andres et al predicted the confined compressive strength and corresponding 

strain of circular concrete columns, the artificial neural networks (ANN) was 

found to be acceptable in predicting the confined compressive strength and 

corresponding strain of circular concrete columns. Also, the ANN model was 

compared to analytical models and was found to perform well [38]. 
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Chao-Wei et al predicted the confinement efficiency of concentrically loaded 

reinforced concrete (RC) columns with rectilinear transverse steel, ANN 

approach provided better results compared with parametric models [39]. 

 

Mansour et al predicted the ultimate shear strength of reinforced concrete (RC) 

beams with transverse reinforcements, the results show that ANN have strong 

potential as a feasible tool for predicting this model, also the ANN model was 

used to show that it could perform a parametric study to evaluate the effects of 

some of the parameters on the chosen output [40]. 

 

Ashour and Alqedra used a feed forward neural network model for evaluating 

the concrete breakout strength of single cast-in and post-installed mechanical 

anchors in tension. The relationship between the concrete breakout strength of 

anchors and different influencing parameters obtained from the trained neural 

networks were in general agreement with these of the ACI 318-02 for cast-in 

and post-installed mechanical anchors [41]. 

 

Cladera and Mari developed an artificial neural network part I to predict the 

shear strength of reinforced beams, based on its results. A parametric study  

was carried out to determine the influence of each parameter affecting the 

failure shear strength of beams without web reinforcement [43]. 

 

Cladera and Mari developed an artificial neural network part II to predict the 

shear strength of reinforced beams failing on diagonal tension failure, based on 

its results, a parametric study was carried out to study the influence of each 

parameter affecting the shear strength of beams with web reinforcement. 

Finally new design expressions were proposed for both normal and high 

strength concrete beams [44]. 

 

 

 



www.manaraa.com

Artificial Neural Networks 
 

34 

Oreta developed an artificial neural network ANN model using past 

experimental data on shear failure of slender (RC) beams without web 

reinforcements, the ANN model performed well when compared with existing 

empirical, theoretical and design code equations [45]. 

 

Hadi presented and discussed the applications of neural networks in concrete 

structures especially applications in structural design. Based on the 

applications, it is found that neural networks are comparatively effective for a 

number or reasons, their ease of use and implementation, provide more 

flexibility when users and developers deal with different kinds of problems 

[36]. 

3.9.2 ANN Applications in Geotechnical Engineering  

Artificial neural networks (ANN) have also been applied to many geotechnical 

engineering tests and have demonstrated degrees of success. A review of the 

literature reveals that ANN have been used successfully in pile capacity 

prediction, modeling soil behavior, site characterization, earth retaining 

structures, settlement of structures, slope stability, design of tunnels and 

underground openings, liquefaction, soil permeability and hydraulic 

conductivity, soil compaction, soil swelling and classification of soils[26]. 

 

Mohammed A. Shahin et al predicted settlement of shallow foundations using 

neural networks. They used a large data base of actual measured settlements to 

develop and verify the artificial neural network model. The predicted 

settlements found by utilizing ANN are compared with the values predicted by 

three of the most commonly used traditional methods. The results indicate that 

ANN are a useful technique for predicting the settlement of shallow 

foundations on cohesion less soils [22]. 
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Kurup et al evaluated the feasibility of using artificial neural network (ANN) 

models for estimating the overconsilidation ratios (OCR) of clays from 

piezocone penetration tests (PCPT), several models were used, comparing their 

predictions with reference to OCR values obtained from odometer tests ANN 

models give very good estimates of OCR [37]. 
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4. MODELING OF DEEP BEAMS USING ARTIFICIAL NEURAL 
NETWORK   

4.1 INTRODUCTION 

This chapter deals with modeling of deep beams using artificial neural 

networks. The reliability of the previous experimental test results used in this 

research is studied. The preprocessing which applied on the collected 

experimental test results is explained.  

 

This chapter also presents the adopted training process to develop a trained 

neural network model; the training process includes defining the topology of 

the required neural network and identifying all neural network parameters. At 

the end of this chapter, a comparison between predicted results from the trained 

model, the experimental results, and results obtained using ACI 318-02 

equations is presented. 

4.2 DETAILS OF PREVIUOS EXPERIMENTAL TESTS  

The development of neural network models needs as many reliable training 

data as possible. The training data consists of those input parameters affecting 

the system and the corresponding output parameters. These data can be 

experiment test data, reliable empirical data or theoretical results. The current 

research utilized experimental test results obtained from previous studies. 

 

A comprehensive study was carried out on the obtained experimental test data 

in order to ensure the adequacy of these data as a training data. 
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It should be mentioned that all previous experiments used in this study have 

identical test setup. The test setup of the previous experiments which 

performed to predict the ultimate strength of deep beams is explained below. 

Setup of Experimental Tests 

A number of one hundred sixty one experiments carried out to predict the 

ultimate shear strength of normal compressive strength of reinforced concrete 

deep beams. These experiments were obtained from previous studies carried 

out by De Paiva and Siess [79], Kong et al.[84], Kong et al.[85], Manuel et 

al.[83], Ramakrishnan and Ananthanarayana [80], Rogowesky et al.[87], Smith 

and Vantsiotis [81], Subedi et al.[82], Tan and Lu [54].  

These experiments had concrete compressive strengths '
cf  in the range of 

2'2 /45/07.16 mmNfmmN c ≤≤ , shear span a varies from 190 to 1760mm, beam 

width b varies from 20 to 50mm, overall height of the beam h varies from 

177.8 to 1750mm, the shear span to depth ratio a/h varies from 0.28 to 2, the 

yield stress of the vertical web shear reinforcement yvf varies from 0 to 520 

N/mm2,and the yield stress of the horizontal web shear reinforcement yhf varies 

from 286.83 to 520 N/mm2 , see Table 4.1. 

 

The study of the pervious experimental results indicated that the tested beams 

showed different types of failures. In this study, those beams failed under shear 

are kept for further processing. The tested beams failed under other types of 

failures were excluded from this study. 

 

The tested beams were subjected to two-point loading. This case provides a 

larger amount of data than other cases do, which is essential for better training 

of a network [7]. 

The geometrical dimensions and reinforcement of a typical RC deep beam 

tested under two point loads is shown in Fig 4.1.  
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Figure  4.1: Geometrical dimensions of a RC deep beam[8]. 

 

The parameters of the tested beams are the width of the beam (b), shear span 

(a), shear span to depth ratio (a/h), depth of the beam (h), concrete compressive 

strength ( '
cf ), yield stress of horizontal web reinforcement ( yhf ), and yield 

stress of vertical web reinforcement ( yvf ). 

 

Forty two high strength reinforced concrete deep beams were tested by Oh and 

Shin [60], with concrete compressive strength in the range of 

MPafMPa c 6.7310.49 ' ≤≤  to determine their ultimate shear capacities 

symmetrically under two-point loading. The effective span-depth ratio dle / was 

varied from 3.0 to 5.0, and the shear span-effective depth ratio a/d from 0.5 to 

2.0. All the beams were singly reinforced with longitudinal steel reinforcement 

ratio tρ of  0.0129, 0.0156 and vertical shear reinforcement ratio vρ  from 0 to 

0.0034, and horizontal shear reinforcement ratio hρ ,  from 0 to 0.0094, 

respectively, see Table 4.2. 
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 All beams had a rectangular cross section of either 120x 560mm or 130 x 

560mm. Longitudinal steel reinforcement consisted of a straight bar with a 90 

degree hook to provide adequate anchorage. Vertical shear reinforcement has 

closed stirrups with 6mm bars, while the horizontal shear reinforcement 

consisted of straight 6mm bars. 

In beams with dle / of 3.0, 4.0, and 5.0, the effective span of specimen was 

planed as 1500, 2000, and 2500mm, respectively, and the a/d was varied within 

the effective span length. For the restraining of local failure, in the top 

compressive face and support of tested beams, steel plates with widths of 180 

and 130mm, respectively, were used. 

 

The parameters of the tested beams are the beam width b, shear span –effective 

depth ratio a/d, effective span- depth ratio dle / , concrete compressive strength 
'

cf ,vertical shear reinforcement ratio vρ , horizontal shear reinforcement 

ratio hρ , and longitudinal steel reinforcement ratio tρ . 

4.3 SELECTION CRITERIA OF EXPERIMENTAL RESULTS AND 

PRE-PROCESSING OF DATA  

The way the data is presented to the neural network affects the learning of the 

network. Therefore; a certain amount of data processing is required before 

presenting the training pattern to the network [69]. 

 

A comprehensive study was carried out on the collected experimental data 

results to choose the data which can be used in the training of a neural network 

model. As the aim of this study is to predict the shear strength of deep beams, 

the results of the deep beams failed under shear is kept while those results of 

deep beams which showed other types of failures were excluded. 
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After applying the above selection criteria a data base of 161 test results was 

obtained for normal strength deep beams and 42 test results for high strength 

concrete. These data will go through other selection and preprocessing stages to 

obtain a reliable training data for neural network. 

4.3.1 Statistics of Laboratory Experiments 

The collected laboratory data were grouped randomly into three subsets : 

 a training set, validation set, and the testing set; see  Table 4.1 and Table 4.2. 
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A- Normal Strength Concrete 

Table  4-1 shows the statistics of those testes carried on normal compressive strength 
deep beams. 

  

b 

mm 

 

h 

mm 

 

 

a 

mm 

 

a/h 

 
'

cf 

N/mm2 

 

yvf 

N/mm2 

 

yhf 

N/mm2 

 

 

V 

(KN) 

 

 

All data 

        

         

No. of 

data 

161 161 161 161 161 161 161 161 

Mean 97.89 510.66 416.44 0.866 25.31 249.05 383.18 473.80

         

Standard 

deviation 

29.13 297.11 291.81 0.367 7.32 203.23 76.95 482.37

         

Minimum 20 177.8 190 0.28 16.07 0 286.83 94.3 

         

Maximum 50 1750 1760 2 49.1  520 520 3272 

Testing 

set 

        

No. of 

data 

39 39 39 39 39 39 39 39 

Mean 98.51 500.66 417.54 0.88 25.18 253.81 381.82 451.94

         

Standard 

deviation 

30.74 262.94 2.92.85 0.39 7.15 202.12 75.57 416.20
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B- High Strength Concrete 

Table  4-2: shows the statistics of those testes carried on high compressive strength deep 
beams. 

  

b 

mm 

 

a/d 

 

 

le/d 

 
'

cf  

MPa 

 

 

vρ =rv 

% 

 

hρ =rh 

% 

 

tρ =rt 

% 

 

V 

MPa 

 

All data         

         

No. of data 42 42 42 42 42 42 42 42 

 

Mean 125.24 0.96 4 55.31 0.16 0.36 1.43 6.79 

         

Standard 

deviation 

5.05 0.45 0.38 10.37 0.09 0.22 0.14 2.32 

         

Minimum  120 0.5 3 49.1 0.12 1.29 3.24 1.73 

         

Maximum 130 2.0 4 73.6 0.24 1.56 10.97 11.47 

         

Testing 

set 

        

No. of data 10 10 10 10 10 10 10 10 

         

Mean 125.45 1.04 3.91 51.67 0.13 0.43 1.44 6.18 

         

Standard 

deviation 

5.22 0.46 0.30 13.34 0.03 0.22 0.14 2.29 
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4.3.2 Frequency of Experimental Data 

Shi suggested that an ANN model might perform well over an entire space only 

when the training data are evenly distributed in the space [86]. 

The distribution of each parameter across its range in the data base is examined 

The frequency distribution of all parameters studied  across the 161 normal 

reinforced concrete compressive strength test results and cross the 42 high 

reinforced concrete compressive strength test results are presented in Fig 4.2 

and Fig 4.3 . 

 

A- Normal strength concrete 

Frequency distribution of input parameters across the range of 161 

experimental results are considered. 
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Fig.4.2.a  Width of the beam(mm) 
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Fig.4.2.b  Depth of the beam(mm) 
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Fig.4.2.c Shear span (mm) 
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Fig.4.2.d Shear span to depth ratio  
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Fig.4.2.e Concrete compressive strength (N/mm2) 
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Fig.4.2.f Yield stress of vertical web reinforcement (N/mm2) 
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Fig.4.2.g Yield stress of horizontal web reinforcement (N/mm2) 

Figure  4-2: Frequency distribution of input parameters across the range of 161 test 
results. 
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The frequency distribution shown in Fig 4.2 (a) shows that 37.89% of the 

beams tested had a width ranging from 40 to 80mm, 50.31% a width from 80 to 

120mm, whereas only 11.8% of the beams tested had a width ranging from 120 

to 200mm. 

 

Fig 4.2 (b) shows that 53.4% of the beams tested had a depth ranging from 200 

to 400mm, others had 46.58%. 

 

Fig 4.2 (c) shows that 66.46% of the beams tested had a shear span ranging 

from 200 to 400mm, others had 33.54%. 

 

Fig 4.2 (d)shows that 45.96% of the beams tested had a shear span to depth 

ratio ranging from 0.50 to 0.75, 45.34% a shear span to depth ratio from 0.75 to 

1.0, whereas only 8.7% of the beams tested had a shear span to depth ratio  

ranging from 1.0 to 1.25. 

 

Fig 4.2 (e)shows that 24.22% of the beams tested had a concrete compressive 

strength ranging from 10 to 20N/mm2, 50.9% a concrete compressive strength 

from 20 to 30 N/mm2, whereas only 24.22% of the beams tested had a concrete 

compressive strength  ranging from 30 to 50 N/mm2. 

 

Fig 4.2 (f)shows that 36.64% of the beams tested had a yield stress of vertical 

web reinforcement ranging from 0 to 50N/mm2, 31.05% a yield stress of 

vertical web reinforcement from 400 to 450 N/mm2, others had 32.3%. 

 

Fig 4.2 (g)shows that 43.48% of the beams tested had a yield stress of 

horizontal web reinforcement ranging from 250 to 350 N/mm2, 36.65% a yield 

stress of horizontal web reinforcement from 400 to 450 N/mm2, others had 

19.87%. 
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As the shear span to depth ratio and concrete compressive strength the most 

effective parameters as drawn from the literature review and they are 

distributed evenly no need for excluding any data. 

 

B- High strength concrete 

Frequency distribution of input parameters across the range of 42 experimental 

results are considered. 
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Fig.4.3.a Width of the beam (mm) 
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Fig.4.3.b Shear span –effective depth ratio. 
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  Fig.4.3.c Effective span- depth ratio. 
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Fig.4.3.d Concrete compressive strength  (MPa) 
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Fig.4.3.e Vertical shear reinforcement ratio (%) 
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Fig.4.3.f Horizontal shear reinforcement ratio (%) 
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Fig.4.3.g Longitudinal steel reinforcement ratio (%) 

Figure  4-3: Frequency distribution of input parameters across the range of 42 test 
results. 
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The frequency distribution shown in Fig 4.3 (a) shows that 47.62% of the 

beams tested had a width ranging from 110 to 120mm, whereas 52.38% of the 

beams tested had a width ranging from 120 to 130mm. 

 

Fig 4.3 (b) shows that 33.33% of the beams tested had a shear span to effective 

depth ranging from 0.5 to 0.75, 28.6% had a shear span to effective depth 

ranging from 0.75 to 1.0, 28.6% had a shear span to effective depth ranging 

from 1.25 to 1.5, and 9.5% had a shear span to effective depth ranging from 

1.75 to 2.0. 

 

Fig 4.3 (c)shows that 85.7% of the beams tested had a effective span- depth 

ratio ranging from 3 to 4, and 7.1%  had effective span- depth ratio ranging 

from 4 to 5, 7.1% had a effective span- depth ratio ranging from 5 to 6. 

 

Fig 4.3 (d) shows that 52.38% of the beams tested had a concrete compressive 

strength ranging from 45 to 50MPa, 23.81% had concrete compressive strength 

from 50 to 55 MPa, whereas 23.81% of the beams tested had a concrete 

compressive strength ranging from 70 to 75 MPa. 

 

Fig 4.3 (e) shows that 61.9% of the beams tested had a vertical shear 

reinforcement ratio ranging from 0.1 to 0.2%, others had 38.1%. 

 

Fig 4.3 (f) shows that 66.69% of the beams tested had a horizontal shear 

reinforcement ratio ranging from 0.4 to 0.5%, others had 33.33%. 

 

Fig 4.3 (g) shows that 47.62% of the beams tested had a longitudinal steel 

reinforcement ratio ranging from 1.2 to 1.3%, 52.38% had longitudinal steel 

reinforcement ratio from 1.5 to 1.6%. 
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As the shear span to effective depth ratio, concrete compressive strength, and  

longitudinal steel reinforcement ratio the most effective parameters as drawn 

from the literature review and they are distributed evenly no need for excluding 

any data. 

4.4 MATLAB NEURAL NETWORK TOOLBOX   

The neural network toolbox available in MATLAB Version 6.5 was used to 

build the current neural network model. Neural network algorithms in 

MATLAB Version 6.5 can be quickly implemented, and large-scale problems 

can be tested conveniently. The ANN toolbox enables modeling the problem 

using back propagation ANN, radial ANN and recurrent ANN with a wide 

range of transfer functions, learning techniques, network architectures, 

performance optimization and performance functions [41,70]. 

4.5 CONSTRUCTION OF ANN MODEL 

By applying the mentioned selection and preprocessing criteria, it was thought 

that a reliable training set of data was obtained. The following sections explain 

the details of the training process which was followed in this research. The 

validation of the developed neural network model is discussed.   

4.5.1 Training Strategy of the ANN Model 

It was decided to use a feed forward back propagation neural network after pre-

processing the data has been completed. Back propagation is the most 

successful and widely used in civil engineering applications [40,41]. 
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Data Scaling 

The first step in training is the data scaling. 

Data scaling is an essential step for network training. One of the reason for pre-

processing the output data is that a sigmoid transfer function is usually used 

within the network. Upper and lower limits of output from a sigmoid transfer 

function are generally 1 and 0, respectively. Scaling of the inputs to the range 

 [-1, +1] greatly improves the learning speed, as these values fall in the region 

of the sigmoid transfer function where the output is most sensitive to variations 

of the input value. It is therefore recommended to normalize the input and 

output data before presenting them to the network. Scaling data can be linear or 

non-linear, depending on the distribution of the data. Most common functions 

are linear and logarithmic functions [69]. 

 

A simple linear normalization function within the values of zero to one is: 

 

( )
( )minmax

min
PP

PPS −
−=  

Where S is the normalized value of the variable P, minP and maxP are variable 

minimum and maximum values, respectively. 

 

The function premnmx can be used to scale inputs and targets so that they fall 

in the range [-1, 1]. The following code illustrates the use of this function. 

 

[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 

net=train(net,pn,tn) 

 

The original network inputs and targets are given in the matrices p and t, 

respectively. The 

normalized inputs and targets, pn and tn, that are returned will all fall in the 

interval [-1,1]. The vectors minp and maxp contain the minimum and 

maximum values of the original inputs, and the vectors mint and maxt contain 
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the minimum and maximum values of the original targets. After the network 

has been trained, these vectors should be used to transform any future inputs 

that are applied to the network. They effectively become a part of the network, 

just like the network weights and biases [21]. 

 

The second step in training a feed forward network is to create the network 

object. The function newff creates a feed forward network. 

 

It requires four inputs and returns the network object. The first input is an R 

by 2 matrix of minimum and maximum values for each of the R elements of 

the input vector. The second input is an array containing the sizes of each layer. 

The third input is a cell array containing the names of the transfer functions to 

be used in each layer. The final input contains the name of the training function 

to be used. 

 

The third step is setting the training parameters  : 

a- The number of ‘epochs’(number of times that the whole set of patterns is 

presented to the network) affects the performance of the network. This number 

depends on many factors, of which the following are most important : 

Number of training data, 

Number of hidden layers, 

Number of neurons in hidden layers, 

Number of dependent output parameters[69]. 

b-Maximum permissible error. 

c- The number of iterations for which the error becomes constant. 

d-The training status is displayed for every show iteration of the algorithm. 

 

Back propagation algorithm in MATLAB Version 6.5 recommends dividing 

the data set into three sets: training, validation and testing sets.  

The training set is used to gradually reduce the ANN error. The error on the 

validation set is monitored during the training process. The validation set error 
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will normally decrease during the initial phase of training, as does the training 

set error [41,21].  

 

However, when the network begins to over-fit the data, the error on the 

validation set will typically begin to rise. When the validation set error 

increases for a specified number of epochs, the training is stopped. The test set 

is used as a further check for the generalization of the ANN, but do not have 

any effect on the training. 

 

 In the present study, training data set comprises a half of all data entries, and 

the remaining data entries are equally divided between the validation and 

testing sets  [41]. 

 

The final step is plotting the training  progress and the correlation coefficient 

“r” 

 

Fig 4.4 presents a flow chart showing the training process of artificial neural 

networks. 
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Flow chart showing the training process  

 

Start 

Choose a starting 
number of hidden layers 

Select a starting number of hidden 
neurons in each hidden layer 

Train the network and 
evaluate the performance of 

the network 

Add a hidden 
neuron 

Is 
performance
acceptable?

 

Stop 

No 

Yes 

 

Figure  4-4: Flow chart showing the training process of ANN [ 77] 

In Fig. 4.4. if the number of neurons in the first hidden layer is large or there is no 

change in performance,  add a new (second) hidden layer. 
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4.6 TOPOLOGY OF THE DEVELOPED ANN  

Two separate ANN models were trained: one for the normal strength concrete deep 

beams, and the second for high strength concrete deep beams. 

4.6.1 Normal Strength Concrete ANN Model. 

There were seven input parameters; namely the width of the beam (b), shear 

span (a), shear span to depth ratio (a/h), depth of the beam (h), concrete 

compressive strength ( '
cf ), yield stress of horizontal web reinforcement ( yhf ), 

and yield stress of vertical web reinforcement ( yvf ). The output parameter is 

the shear strength V  (N/mm2). 

 

After several trials and iterations using MATLAB tools the following topology 

can be obtained for the normal concrete compressive strength deep beams. 

 

The topology of the network is: 

 Type of architecture : Multi-layer feed forward 

 Number of layers (hidden + output): 3 

Note :We do not count the input layer of source nodes because no computation 

is performed there. 

Table  4-3: Number of Used Neurons and Transfer Functions for Normal Strength 
Concrete . 

Layer Name Number of  Neurons Transfer Function 

First hidden layer 5 logsig 

Second hidden layer 5 logsig 

Output layer 1 purlin 
 

 Training algorithm used: Back probation algorithm  

 Number of epochs required for training: 5000 

 Goal (Sum Squared Error SSE): 0.9 

 



www.manaraa.com

Modeling of Deep Beams Using Artificial Neural Network 
 

59 

 The architecture of ANN  model for normal strength concrete deep beams is 

shown in Fig 4.5. 

 

The input layer The first 
hidden  layer 

The second 
hidden  layer 

The output  
layer 

b 

V 

a 

a/h 

h 

fc’ 

fyh 

fyv 

 

Figure  4.5: The architecture of ANN  model for normal strength concrete deep beams. 

 

4.6.2 High Strength Concrete ANN Model. 

There were seven input parameters; namely the width of the beam (b), shear 

span –effective depth ratio (a/d), effective span- depth ratio ( dle / ), concrete 

compressive strength ( '
cf ), vertical shear reinforcement ratio( vρ  ), horizontal 

shear reinforcement ratio( hρ  ), and longitudinal steel reinforcement ratio( tρ  ). 

The output parameter is the shear strength V  (MPa). 

 

After several trials and iterations using MATLAB tools the following topology 

can be obtained for the high concrete compressive strength deep beams. 
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The topology of the network is: 

 Type of architecture : Multi-layer feed forward 

 Number of layers (hidden + output):3 

Table  4-4: Number of Used Neurons and Transfer Functions for High  Strength 
Concrete . 

 

Layer Name Number of  Neurons Transfer Function 

First hidden layer 5 logsig 

Second hidden layer 5 logsig 

Output layer 1 purlin 
 

 Training algorithm used: Back probation algorithm 

 Number of epochs required for training: 5000 

 Goal (Sum Squared Error SSE): 0.9 

The architecture of ANN  model for high strength concrete deep beams is shown in 

Fig 4.6. 
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hidden  layer 

The second 
hidden  layer 

The output  
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fc’ 
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Figure  4.6: The architecture of ANN  model for high strength concrete deep beams. 
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4.7 PERFORMANCE OF ANN 

The performance of the trained neural networks was monitored during the 

training process as the sum squared error (SSE)  over all the training data. The 

training process stops when any of the following criteria is satisfied: 

 the maximum number of iterations (epochs) is reached; 

 the performance has been minimized to the required target; 

 the average training error level has reached a predetermined target 

value;  

 the performance gradient falls below a minimum value; the validation 

set error starts to rise for a specified number of epochs [21,69,41]. 

4.7.1 Normal Strength Concrete 

A statistical comparison between the ANN, the test result, and ACI code is presented 

in Table 4.5. These statistical parameters show that the predicted shear strength using 

the trained ANN method is in good agreement with the experimental results.  

 

Table  4-5: Comparisons between the ANN, the test result, and ACI  for Normal 
Strength Concrete. 

 Mean Standard deviation 

TestV (N/mm2) 496.82 560.598 

ANNV (N/mm2) 479.58 537.61 

ACIV (N/mm2) 703.46 474.37 

/Test ANNV V 1.04 0.278 

/Test ACIV V 2.78 9.05 
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The progress of the training was examined by plotting the training, validation 

and test sum squared errors, SSE, versus the performed number of iterations, as 

presented in  Fig. 4.7. 

Figure  4-7: Training progress of ANN 

 

The results shown in Fig. 4.7 are fairly reasonable, since the test set error and 

the validation set error have very similar characteristics and no significant 

over-fitting has occurred. 

 

To insure the adequacy of the trained neural network model the testing data 

which has been taken randomly from the whole data is taken and trained 

separately,  these testing data were 39 deep beams for normal concrete 

compressive strength. 
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Fig. 4.8 gives comparisons of the shear strength  from experiments and those 

obtained from the trained neural network (a) for 161 training data set and (b) 

for 39 testing data set only. 

 

These comparisons show that the predicted shear strength using the trained 

ANN is in good agreement with the experimental results. Overall, it could be 

concluded that the trained neural networks were successful in learning the 

relationship between the input and output data. 
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Fig.4.8. a 

testing set

r2 = 0.813

0

500

1000

1500

2000

2500

0 500 1000 1500 2000
Experimental shear strength

Pr
ed

ic
te

d 
sh

ea
r 

st
re

ng
th

testing set
(testing set) خطي

 

Fig.4.8. b  

Figure  4-8: Neural network shear strength (N/mm2) predictions (a)training data, (b)testing 
set. 
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4.7.2 High Strength Concrete 

A statistical comparison between the ANN, the test result, and ACI code is presented 

in Table 4.6. These statistical parameters show that the predicted shear strength 

using the trained ANN method is in good agreement with the experimental 

results.  

 

Table  4-6: Comparisons between the ANN, the test result, and ACI  for High Strength 
Concrete. 

 Mean Standard deviation 

TestV (MPa) 6.445 2.34 

ANNV (MPa) 6.449 2.184 

ACIV (MPa) 7.00 2.308 

/Test ANNV V 1.002 0.169 

/Test ACIV V 1.228 0.192 

 

To insure the adequacy of the trained neural network model, the testing data 

which has been taken randomly from the whole data is taken and trained 

separately, these testing data were 10 deep beams for high concrete 

compressive strength. 

 

 Fig. 4.9 gives comparisons of the shear strength  from experiments and those 

obtained from the trained neural network (a) for 42 training data set and (b) for 

10 testing data set only. 

 

These comparisons show that the predicted shear strength using the trained 

ANN is in good agreement with the experimental results. Overall, it could be 

concluded that the trained neural networks were successful in learning the 

relationship between the input and output data. 
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Fig.4.9. a  
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Fig.4.9. b  

Figure  4-9: Neural network shear strength (MPa) predictions (a)training data, (b)testing set. 
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5.  PARAMETRIC STUDY 

The advantage of trained neural network models is that parametric studies can 

be easily done by simply varying one input parameter and all remaining input 

parameters are set to constant values [45].  

 

Using neural networks technique, it will be possible to study the effect of all 

parameters on the ultimate shear strength of deep beams using all test results 

available in the literature at the same time; this may eliminate the inconsistency 

and conflicting conclusions drawn by different researches [8]. 

 

The ultimate shear strength in deep beams is controlled by many parameters 

specially, the width of the beam (b),shear span (a), shear span to depth ratio 

(a/h), overall depth of the beam (h), concrete compressive strength ( '
cf ), yield 

stress of horizontal web reinforcement ( yhf ), yield stress of vertical web 

reinforcement ( yvf ), effective span-depth ratio ( dle / ), vertical shear 

reinforcement ratio( vρ ), horizontal shear reinforcement ratio( hρ ), and 

longitudinal steel reinforcement ratio( tρ ). 
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The ACI 318-02 formulas takes into consideration the effect of some of these 

parameters as shown in the following equations : 

 

The normal shear resisting force cV of the of the plain concrete can be taken as 

dbfdb
M

dV
wf

dV
M

V wcw
u

u
c

u

u
c

\\ 6)250009.1)(5.25.3( ≤+−= ρ
 

 

( 5-1) 

 

The force resisted by the shear reinforcement sV : 
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( 5-2) 

 

 

provided such that  ( )sc VVV += φ  

 

 

In this chapter, the influence of these parameters on shear strength of deep 

beams for both normal and high compressive strength concrete will be 

discussed using the trained neural network, after that a relationship between the 

ultimate shear strength predicted from the neural networks model versus the 

parameter under consideration will be discussed. 
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5.1 PARAMETRIC STUDY FOR NORMAL STRENGTH CONCRETE 

DEEP BEAMS 

Three cases will be studied to show the effect of each parameter on the chosen 

output which is the shear strength, these cases are the lower, the average, and 

the upper case.  

 

Case 1 :The lower case 

b =  70mm; h = 350mm; a = 300mm; a/h = 0.50;  
'

cf = 20 N/mm2 ; yvf = 150 N/mm2; and yhf  = 330 N/mm2. 

 

Case 2 :The average case 

b =  98mm; h = 510mm; a = 415mm; a/h = 0.86;  
'

cf  = 25 N/mm2 ; yvf  = 250 N/mm2; and yhf  = 380 N/mm2. 

 

Case 3 :The upper case 

b =  126mm; h = 670mm; a = 515mm; a/h = 1.22;  
'

cf  = 30 N/mm2 ; yvf  = 350 N/mm2; and yhf  = 430 N/mm2. 

Table 5.1 shows the variations of the input parameters which used in the ANN 

model for normal strength concrete. 

Table  5-1: Variations for normal strength concrete. 

Parameter Variations 

b (mm) 50 75 100 125 150 175 200 

h (mm) 250 500 750 1000 1250 1500 1740 

a(mm) 200 400 600 800 1000 1200 1400 

a/h 0.25 0.5 0.75 1 1.25 1.5 1.75 
'

cf  N/mm2 15 20 25 30 35 40 45 

yvf  N/mm2 300 330 360 390 420 450 480 

yhf  N/mm2 250 275 300 325 350 375 400 
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5.1.1 The Shear span-Depth ratio. 
It can be noted from Fig. 5.1 that the ultimate shear strength increases with 

decreasing the shear span-depth ratio while other parameters constant.  

In other words, it is clear that the shear strength is inversely proportional to the 

shear span-depth ratio and has the most significant effect on the shear strength 

of deep beams This result is in a good agreement with findings of other 

researchers  such as  Smith, Goh, and Ashour [8,42,81]. 
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Figure  5-1:Effect of shear span to depth ratio on shear strength. 

Equation (5.3) shows the relationship between the predicted shear strength and 

the shear span to depth ratio, it  can be noted from equation (5.3) that a 

parabolic relationship between the shear span- depth ratio and the predicted 

ultimate shear strength, while in the ACI code  this relationship does not exist. 

 

( ) 01

2

2 ah
aah

aaV +−=  
( 5-3)

Where : a2, a1 and a0 are coefficients have the following values:  

a2= 119.7, a1=462.27,and a0=693.1 

r2=0.9999 
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Fig 5.2 shows the relationship between shear span to depth ratio and the 

predicted shear strength for three levels of concrete compressive strength, 

while keeping all other input parameter constant as follows:  

b =  98mm; h = 510mm; a = 415mm; yvf = 250 N/mm2; and yhf  = 380 N/mm2. 
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Figure  5-2: Effect of shear span to depth ratio on shear strength. 

 

The concrete compressive strength has no effect on the ultimate shear strength 

when a/d > 1. and have a small effect when a/d < 1.  
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5.1.2 The Concrete Compressive Strength. 
 

It can be noted from Fig. 5.3 that the ultimate shear strength increases with 

increasing the compressive strength of concrete while other parameters 

constant. This is consistent with Smith and Goh [42,81]. Fig 5.3 shows also 

that the increasing rate in the predicted shear strength is larger in case 3 than in 

the other cases, which means that the other parameters are significantly 

effective  on the predicted value of shear strength. 
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Figure  5-3:Effect of  concrete compressive strength on shear strength . 

 

Equation (5.4) shows the relationship between the predicted shear strength and 

the concrete compressive strength. 

( )ncfaV '
0=  

( 5-4)

a0=73.327 and n=0.5436 

r2=0.9119 

Equation 5.4 means that the predicted strength is directly proportional with 

approximately the square root of the concrete compressive strength. 
'

cV α f  
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Fig 5.4 shows the relationship between concrete compressive strength  and the 

predicted shear strength for three levels of shear span to depth ratio, while 

keeping all other input parameter constant as follows: 

b =  98mm; h = 510mm; a = 415mm; yvf = 250 N/mm2; and yhf  = 380 N/mm2. 
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Figure  5-4:Effect of  concrete compressive strength on shear strength . 

 

It is clear that the shear span to depth ratio has no effect on the predicted shear 

strength when the concrete compressive strength is smaller than 35 MPa and 

when the concrete compressive strength is larger than 35MPa the shear strength 

increases with decreasing the shear span-depth ratio. 
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5.1.3  The Yield Stress of Vertical Web Reinforcement. 
It can be noted from Fig. 5.5 that the ultimate shear strength is slightly affected 

by the yield stress of vertical web reinforcement  . 
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Figure  5-5: Effect of  yield stress of vertical web reinforcement  on shear strength . 

 

Equation (5.5) shows a linear relationship between the predicted shear strength 

and yield stress of vertical web reinforcement. 

01 afaV yv +=   
( 5-5) 

a1=0.2321 and a0=336.8 

r2=0.9919 

Equation 5.5 shows that the predicted shear strength is directly proportional 

with the yield stress of vertical web reinforcement and the relationship between 

them is linear. 
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5.1.4  The Yield Stress of Horizontal Web Reinforcement. 
 

It can be noted from Fig. 5.6 that the ultimate shear strength is slightly affected 

by the yield stress of horizontal web reinforcement  . 
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Figure  5-6: Effect of  yield stress of horizontal web reinforcement on shear strength. 

 

Equation (5.6) shows the relationship between the predicted shear strength and 

yield stress of horizontal web reinforcement. 

( )nyhfaV 0=  
( 5-6)

a0=0.1473 and n=1.3067 

r2=0.9314 
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5.1.5  The Width of The Beam. 
It can be noted from Fig. 5.7 that the ultimate shear strength increases with 

increasing  the width of the beam. 
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Figure  5-7: Effect of  the beam width on shear strength. 

 

Equation (5.7) shows the relationship between the predicted shear strength and 

the beam width. 

01
2

2 ababaV +−=  ( 5-7)

 

a2=0.0117, a1=0.9792,and a0=375.99 

r2=0.9974 

Equation 5.7 shows that the predicted shear strength is directly proportional 

with the width of the beam. 
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5.1.6  The Shear Span. 
It can be noted from Fig. 5.8 that the ultimate shear strength increases with 

increasing  the shear span of the beam. Fig 5.8 shows also that the increasing 

rate is larger in case 3 than in the other cases, which means that the other 

parameters are effective on the predicted value of shear strength. 
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Figure  5-8: Effect of  shear span on shear strength. 

 

Equation (5.8) shows the relationship between the predicted shear strength and 

the shear span. 

01
2

2 aaaaaV +−=  ( 5-8) 

 

a2=0.0001, a1=0.1349,and a0=330.47 

r2=0.9822 

Equation 5.8 shows that the predicted shear strength is directly proportional 

with shear span. 
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5.1.7 The Height of The Beam. 
 

It can be noted from Fig. 5.9 that the ultimate shear strength increases with 

increasing  the height of the beam. 
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Figure  5-9: Effect of  height of the beam on shear strength. 

 

Equation (5.9) shows the relationship between the predicted shear strength and 

the height of the beam. 

 

01
2

2 ahahaV +−=  ( 5-9)

 

a2= 0.0004, a1=0.1789,and a0=320.83 

r2=0.9979 

 



www.manaraa.com

Parametric Study 
 

79 

5.2 PARAMETRIC STUDY FOR HIGH STRENGTH CONCRETE 

DEEP BEAMS 

Three cases will be also studied to show the effect of each parameter on the 

chosen output which is the shear strength, these cases are the lower, the 

average, and the upper case  . 

Case 1 :The lower case 

b =  124mm; a/d = 0.8; dle / = 3.5; '
cf = 45 MPa ; 

 vρ = 0.12 %; hρ = 0.2 %; and tρ  = 1.35 %. 

 

Case 2 :The average case 

b =  126mm; a/d = 0.97; dle / = 4; '
cf  = 50 MPa ;  

vρ = 0.16 %; hρ = 0.36 %; and tρ  = 1.45 %. 

 

Case 3 :The upper case 

b =  128mm; a/d = 1.14; dle /  = 4.5; '
cf  = 55 MPa ;  

vρ = 0.2 %; hρ = 0.52 %; and tρ  = 1.55 %. 

 

Table 5.2 shows the variations of the input parameters which used in the ANN 

Model for normal strength concrete. 

Table  5-2: Variations for high strength concrete. 

Parameter     Variations    

b (mm) 121 122 123 124 125 126 127 

a/d 0.5 0.6 0.7 0.8 0.9 1 1.1 

dle /  3.5 3.7 3.9 4.1 4.3 4.5 4.7 
'

cf  MPa 40 45 50 55 60 65 70 

vρ = rv 0.1 0.15 0.18 0.22 0.26 0.3 0.34 

hρ = rh 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

tρ = rt 1.3 1.34 1.38 1.42 1.46 1.5 1.54 
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5.2.1 The Shear span-depth ratio. 

It can be noted from Fig. 5.10 that the ultimate shear strength increases with 

decreasing the shear span-depth ratio  while other parameters held constant, as 

well as the ultimate shear strength is affected predominantly by a/d,  this agrees 

with Tan and Oh [54,60]. 
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Figure  5-10: Effect of  shear span-depth ratio on shear strength. 

 

Equation (5.10) shows the relationship between the predicted shear strength 

and the shear span to effective depth ratio, it  can be noted from equation (5.10) 

that a parabolic relationship between the shear span- effective depth ratio and 

the predicted ultimate shear strength. While in the ACI code  this relationship 

does not exist . 

 

( ) 01

2

2 ad
aad

aaV +−=  ( 5-10)

Where : a2, a1 and a0 are coefficients and  

a2= 11.377, a1=26.057,and a0=19.025 

r2=0.9994 
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Fig 5.11 shows the relationship between shear span to effective depth ratio and 

the predicted shear strength for three levels of concrete compressive strength, 

while keeping all other input parameter constant as follows:  

b =  126mm; dle / = 4; vρ = 0.16 %; hρ = 0.36 %; and tρ  = 1.45 %. 
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Figure  5-11: Effect of shear span to effective depth ratio on shear strength. 

 

From Fig 5.11 it is clear that the concrete compressive strength has almost a 

constant effect on the predicted shear strength that the three cases are 

approximately parallel to each other . 
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5.2.2 Concrete  Compressive Strength. 

It can be noted from Fig. 5.12 that the ultimate shear strength increases with 

increasing  the compressive strength of concrete while other parameters held 

constant, this agrees with Oh [60]. 
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Figure  5-12: Effect of concrete compressive strength on shear strength. 

 

Equation (5.11) shows the relationship between the predicted shear strength 

and the concrete compressive strength, it  can be noted from equation (5.11) 

that concrete compressive strength has a slight change on the shear strength in 

the case of high concrete compressive strength, and a linear relationship is 

found between concrete compressive strength and shear strength. 

0
'

1 afaV c +=  ( 5-11)

a1=0.0374, and a0=2.9706 

r2=0.9998 

 

V   α    '
cf      
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Fig 5.13shows the relationship between concrete compressive strength  and the 

predicted shear strength for three levels of shear span to effective depth ratio, 

while keeping all other input parameter constant as follows: 

b =  126mm; dle /  = 4; vρ = 0.16 %; hρ = 0.36 %; and tρ  = 1.45 %. 
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Figure  5-13:  Effect of  concrete compressive strength on shear strength. 

 

From Fig 5.13 it is clear that the shear span to effective depth ratio  has 

constant effect on the predicted shear strength, and the three cases are almost 

constant. 

 

It can be noted  that in normal strength deep beams the ultimate shear strength 

is directly proportional to the square root of the concrete compressive strength 

as in the ACI code, while in high strength deep beams the ultimate shear 

strength is directly proportional to the concrete compressive strength. 
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5.2.3 The Effective span-depth ratio. 

It can be noted from Fig. 5.14 that the ultimate shear strength increases with 

decreasing the effective span-depth while other parameters held constant, also 

the ultimate shear strength was slightly affected by l/d this agrees with Oh [60]. 
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Figure  5-14 Effect of  effective span-depth ratio on shear strength. 

 

Equation (5.12) shows a linear relationship between the predicted shear strength and 

the effective span to depth ratio. 

 

01 ad
laV e +⎟

⎠
⎞⎜

⎝
⎛=  ( 5-12)

Where :  

a1=-1.5309and a0=13.46 

r2=0.9971 

 

 

 



www.manaraa.com

Parametric Study 
 

85 

5.2.4 The Width of The Beam. 

It can be noted from Fig. 5.15 that the ultimate shear strength increases with 

increasing the width of the beam while other parameters held constant. 
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Figure  5-15: Effect of  width of the beam on shear strength. 

 

Equation (5.13) shows a linear relationship between the predicted shear strength and 

the width of the beam. 

 

01 abaV +=  ( 5-13)

Where :  

a1=-0.2501and a0=-25.762 

r2=0.9725 
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5.2.5 The Vertical Shear Reinforcement Ratio. 

It can be noted from Fig. 5.16 that the ultimate shear strength increases slightly   

with increasing the web vertical shear reinforcement ratio while other 

parameters held constant, this agrees with Oh [60]. 
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Figure  5-16:Effect of  vertical shear reinforcement ratio on shear strength. 

 

Equation (5.14) shows a linear relationship between the predicted shear strength and 

the vertical shear reinforcement ratio. 

01 aaV v += ρ  ( 5-14)

Where :  

a1=5.1278 and  a0=4.7218 

r2=0.9636 
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5.2.6 The Horizontal Shear Reinforcement Ratio. 

It can be noted from Fig. 5.17 that the ultimate shear strength increases slightly   

with increasing the web horizontal shear reinforcement ratio while other 

parameters held constant, this agrees with Oh [60]. 

 

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Horizontal shear reinforcement rh (%)

P
re

di
ct

ed
 s

he
ar

 s
tre

ng
th

 (M
P

a)
Case 1 Case 2 Case 3 

 
Figure  5-17:Effect of horizontal shear reinforcement ratio on shear strength. 

 

Equation (5.15) shows a linear relationship between the predicted shear strength and 

the horizontal shear reinforcement ratio. 

01 aaV h += ρ  ( 5-15)

Where :  

a1=1.9343 and  a0=5.6682 

r2=0.9416 
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5.2.7 The Longitudinal Steel Reinforcement ratio .  

It can be noted from Fig. 5.18  that the ultimate shear strength increases with 

increasing the longitudinal steel reinforcement ratio, longitudinal steel 

reinforcement ratio has higher effect on ultimate shear strength than predicted 

vales using ACI  code equations in deep beams with high strength concrete  

[88]. 

 

0

2

4

6

8

10

12

1.2 1.26 1.32 1.38 1.44 1.5 1.56
Longitudinal steel reinforcement rt (%)

P
re

di
ct

ed
 s

he
ar

 s
tre

ng
th

 (M
P

a)

Case 1 Case 2 Case 3 

 
Figure  5-18: Effect of  longitudinal steel reinforcement ratio on shear strength. 

 

Equation (5.16) shows the relationship between the predicted shear strength and the 

vertical shear reinforcement ratio. 

01
2

2 aaaV tt −+−= ρρ  ( 5-16)

Where :  

a2=10.923, a1=50.117,and a0=43.051 

r2=0.9922 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 INTRODUCTION 

The application of Artificial Neural Networks (ANN) to predict the ultimate 

shear strengths of deep reinforced concrete (RC) beams with normal and high 

compressive strength has been investigated in this thesis. An ANN model is 

built, trained and tested using the available test data of 161 normal strength RC 

deep beams and 42 high strength RC deep beams collected from the technical 

literature.  

The ANN model was used to perform parametric studies in order to evaluate 

the effects of the variables of the deep beams on the ultimate shear strength 

which is the chosen output parameter. 

6.2 GENERAL CONCLUSIONS ON THE USE OF ANN 

On the basis of results obtained in this study, important conclusions  would  be 

summarized as follows: 

1. The study has added another success for artificial  neural networks to 

predict the ultimate shear strength of deep beams for both normal and 

high concrete compressive strength, as previous researchers showed. 

The neural networks are powerful tools and have strong potential in 

learning the relationship between the input and output parameters and 

thus predicting outputs from new inputs. 
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2. The ANN is capable of modeling nonlinear relationship between 

different parameters such as the relation of deep beams, where the 

critical factors include the strength of the concrete, the beam geometry, 

and the steel reinforcement in the beam. 

6.3 CONCLUSIONS ON THE USE OF ANN IN PREDICTNG SHEAR  

STRENGTH OF DEEP BEAMS 

The topology of the network for both normal and high strength concrete deep 

beams has the following features:  

1- The type of architecture used was the Multi-layer feed forward, four layers 

where used the input layer containing 7 neurons,  the first and second hidden 

layers each contains 5 neurons while in the output layer there was 1 neuron. 

The training algorithm used was  back probation algorithm . 

2- The average ratio of the experimental shear strength to the predicted shear 

strength using ANN ( ) ( )
ANNuerimentalu VV exp  is 1.04 for normal strength concrete, 

whereas the average ratio of the experimental shear strength to predicted shear 

strength from ACI 318-02 ( ) ( )
ACIuerimentalu VV exp  is 2.78.  

3- The average ratio of the experimental shear strength to the predicted shear 

strength using ANN ( ) ( )
ANNuerimentalu VV exp  is 1.002 for high strength concrete, 

whereas the average ratio of the experimental shear strength to predicted shear 

strength from ACI 318-02 ( ) ( )
ACIuerimentalu VV exp  is 1.228. 

4- The conclusions 2 and 3 proved that the developed neural network was 

much successful in predicting the ultimate shear strength in deep beams than 

the ACI 318-02 equations within the ranges of  the training data.  
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6.4 CONCLUSIONS OF THE PERFORMED PARAMETRIC STUDY  

Using the current technique(ANN), it was possible to study the effect of  each 

of the influencing parameters on the ultimate shear strength of deep beams 

using all test results available in the literature at the same time; this may 

eliminate the inconsistency and conflicting conclusions drawn by different 

researches. 

The parametric study was conducted using the trained artificial neural 

networks, the following conclusions may be drawn: 

6.4.1 Normal Strength Concrete Deep Beams 

 The ultimate shear strength increases with decreasing the shear span to 

depth ratio, and has the most significant effect on the shear strength of 

deep beams . 

 The concrete compressive strength has a slight  effect on the ultimate 

shear strength when a/d > 1, and have a small effect when a/d < 1.  

 The ultimate shear strength is directly proportional to the compressive 

strength of concrete. The predicted shear strength is larger in case 3  

than in the other cases, which means that the other parameters have  a 

significant effect on the predicted value of shear strength . 

 The shear span to depth ratio has no effect on the predicted shear 

strength when the concrete compressive strength is smaller than 35 MPa 

and when the concrete compressive strength is larger than 35MPa the 

shear strength increases with decreasing the shear span-depth ratio. 

 The ultimate shear strength is slightly affected by the yield stress of 

vertical and horizontal web reinforcement . 

 The ultimate shear strength increases with increasing  the width, the 

shear span, and the height of the beam. 
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6.4.2 High Strength Concrete Deep Beams 

 The ultimate shear strength increases with decreasing the shear span-

depth ratio, the ultimate shear strength is affected predominantly by a/d. 

 The ultimate shear strength increases with increasing the compressive 

strength of concrete. 

 In normal strength deep beams the ultimate shear strength is directly 

proportional to the square root of the concrete compressive strength as 

in the ACI code, while in high strength deep beams the ultimate shear 

strength is directly proportional to the concrete compressive strength. 

 The ultimate shear strength was slightly  affected by l/d. 

 The ultimate shear strength increases with increasing the width of the 

beam . 

 The ultimate shear strength increases slightly with increasing the web 

vertical and horizontal shear reinforcement ratio.  

 The ultimate shear strength increases with increasing the longitudinal 

steel reinforcement ratio, the longitudinal steel reinforcement ratio has 

higher effect on ultimate shear strength than predicted vales using ACI  

code equations in deep beams with high strength concrete . 

6.5 RECOMMENATIONS FOR FUTURE STUDIES 

The current study showed very promising results in predicting the ultimate 

strength of deep beams. However, the following points would be recommended 

for future studies to support the findings of this study:  

 

1- It is recommended to carry out neural network modeling using different 

ANN types such as recurrent networks with various  training algorithms 

such as radial bases can be used.  

2- It is recommended to utilize other artificial intelligence techniques such 

as fuzzy logic or genetic programming. 
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3-  Compare the results of the developed ANN with other codes of practice 

and techniques (Strut-and –Tie model). 

4- Compare the results of the developed ANN with other results obtained 

from nonlinear material model using Finite Element packages.  

5- Obtain more training data from newly tested deep beams and add  them 

to the training data. This will improve the training process of the problem.  
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APPENDIX A: DATABASE USED FOR THIS STUDY 

Database used for normal strength reinforced concrete deep beams  
 Ref. Beam b h a* f'c V fyv fyh 

   mm mm mm N/mm2 KN N/mm2 N/mm2 

1 De-Paiva G23S-11 50.8 330.2 203.2 24.55 179.70 0 315.1015 

2 De-Paiva G23S-21 50.8 330.2 203.2 23.58 106.75 0 354.403 

3 De-Paiva G24S-11 50.8 330.2 203.2 38.61 181.48 0 315.1015 

4 De-Paiva G24S-21 50.8 330.2 203.2 36.13 100.52 0 354.403 

5 De-Paiva G33S-11 76.2 228.6 203.2 23.31 170.80 0 326.1335 

6 De-Paiva G33S-12 76.2 228.6 203.2 19.93 169.02 220.64 326.1335 

7 De-Paiva G33S-21 76.2 228.6 203.2 21.03 108.97 0 311.654 

8 De-Paiva G33S-31 76.2 228.6 203.2 19.93 213.95 0 311.654 

9 De-Paiva G33S-32 76.2 228.6 203.2 20.06 202.83 220.64 304.759 

10 De-Paiva G34S-11 76.2 228.6 203.2 35.16 219.73 0 325.444 

11 De-Paiva G34S-21 76.2 228.6 203.2 34.2 112.09 0 324.065 

12 De-Paiva G43S-11 101.6 177.8 203.2 24.2 153.90 0 304.0695 

13 De-Paiva G44S-11 101.6 177.8 203.2 36.96 167.24 0 330.2705 

14 De-Paiva F2S1 50.8 330.2 203.2 33.92 192.60 220.64 317.17 

15 De-Paiva F2S2 50.8 330.2 203.2 31.72 245.10 220.64 308.896 

16 De-Paiva F3S2 76.2 228.6 203.2 24.34 122.80 220.64 326.823 

17 De-Paiva F3S3 76.2 228.6 203.2 34.34 242.86 220.64 326.823 

18 De-Paiva F4S1 101.6 177.8 203.2 34.27 94.30 220.64 321.9965 

19 De-Paiva F4S22 101.6 177.8 203.2 34.68 182.37 220.64 335.097 

20 Kong(1970) 1-30. 76.2 762 254 22.13 477.72 280 286.83 

21 Kong(1970) 1-25. 76.2 635 254 24.55 448.36 280 286.83 

22 Kong(1970) 1-20. 76.2 508 254 21.24 378.97 280 286.83 

23 Kong(1970) 1-15. 76.2 381 254 21.24 328.26 280 286.83 

24 Kong(1970) 1-10. 76.2 254 254 21.65 178.81 280 286.83 

25 Kong(1970) 2-30. 76.2 762 254 19.20 498.18 303 286.83 

26 Kong(1970) 2-25. 76.2 635 254 18.62 448.36 303 286.83 

27 Kong(1970) 2-15. 76.2 381 254 22.75 279.33 303 286.83 
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28 Kong(1970) 2-10. 76.2 254 254 20.13 199.27 303 286.83 

29 Kong(1970) 3-30. 76.2 762 254 22.55 552.44 0 286.83 

30 Kong(1970) 3-25. 76.2 635 254 20.96 451.03 0 286.83 

31 Kong(1970) 3-20. 76.2 508 254 19.24 415.44 0 286.83 

32 Kong(1970) 3-15. 76.2 381 254 21.93 318.48 0 286.83 

33 Kong(1970) 3-10. 76.2 254 254 22.62 172.58 0 286.83 

34 Kong(1970) 4-30. 76.2 762 254 22.00 483.94 0 286.83 

35 Kong(1970) 4-25. 76.2 635 254 20.96 402.10 0 286.83 

36 Kong(1970) 4-20. 76.2 508 254 20.13 361.18 0 286.83 

37 Kong(1970) 4-15. 76.2 381 254 21.99 218.84 0 286.83 

38 Kong(1970) 4-10. 76.2 254 254 22.61 191.26 0 286.83 

39 Kong(1970) 5-30. 76.2 762 254 18.55 478.60 280 286.83 

40 Kong(1970) 5-25. 76.2 635 254 19.24 416.33 280 286.83 

41 Kong(1970) 5-20. 76.2 508 254 20.14 345.16 280 286.83 

42 Kong(1970) 5-15. 76.2 381 254 21.93 254.43 280 286.83 

43 Kong(1970) 5-10. 76.2 254 254 22.55 155.68 280 286.83 

44 Kong(1970) 6-15. 76.2 381 254 26.08 345.16 0 286.83 

45 Kong(1970) 6-10. 76.2 254 254 25.10 196.60 0 286.83 

46 Kong(1972) S-30 76.2 762 254 22.13 575.57 337.855 286.83 

47 Kong(1972) S-25 76.2 635 254 21.24 562.67 337.855 286.83 

48 Kong(1972) S-20 76.2 508 254 21.79 478.16 337.855 286.83 

49 Kong(1972) S-15 76.2 381 254 27.65 415.89 337.855 286.83 

50 Kong(1972) S-10 76.2 254 254 23.31 220.18 337.855 286.83 

51 Kong(1972) D-30 76.2 762 254 23.17 556.89 296.485 286.83 

52 Kong(1972) D-25 76.2 635 254 23.79 539.10 296.485 286.83 

53 Kong(1972) D-20 76.2 508 254 24.75 555.56 296.485 286.83 

54 Kong(1972) D-15 76.2 381 254 27.65 473.27 296.485 286.83 

55 Kong(1972) D-10 76.2 254 254 24.20 237.08 296.485 286.83 

56 Manueletal Beam5 101.6 460 266.5 34.26815 569.344 0 409.563 

57 Manueletal Beam6 101.6 460 266.5 37.43985 538.208 0 409.563 

58 Manueletal Beam7 101.6 460 266.5 31.9928 600.48 0 409.563 

59 Manueletal Beam8 101.6 460 266.5 38.8878 560.448 0 409.563 

60 Manueletal Beam9 101.6 460 410 37.6467 378.08 0 409.563 
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61 Manueletal Beam10 101.6 460 410 44.8175 329.152 0 409.563 

62 Manueletal Beam11 101.6 460 410 37.16405 342.496 0 391.636 

63 Manueletal Beam12 101.6 460 410 33.71655 342.496 0 409.563 

64 Ram A1 76.2 381 216 0.00 0.00 0 320 

65 Ram B1 76.2 381 216 0.00 0.00 0 320 

66 Ram B2 76.2 508 216 0.00 0.00 0 320 

67 Ram B3 78.7 572 216 0.00 0.00 0 320 

68 Ram B4 78.7 762 216 0.00 0.00 0 320 

69 Ram C1 76.2 381 216 0.00 0.00 0 320 

70 Ram C2 78.7 508 216 0.00 0.00 0 320 

71 Ram C3 76.2 572 216 0.00 0.00 0 320 

72 Ram C4 78.7 762 216 0.00 0.00 0 320 

73 Rogowsky BM1-1 200 1000 1000 26.1 1204 0 381 

74 Rogowsky BM2-1 200 1000 1000 26.8 1500 0 381 

75 Rogowsky BM1A-1 200 1000 1000 26.4 1200 0 368 

76 Rogowsky BM1-15 200 600 1000 42.4 606 0 452 

77 Rogowsky BM2-15 200 600 1000 42.4 696 0 452 

78 Rogowsky BM1-2 200 500 1000 43.2 354 0 452 

79 Rogowsky BM2-2 200 500 1000 43.2 370 0 452 

80 Smith&Vantsiotis  0A0-44 101.6 355.6 304.8 20.48 279.07 0 437.4 

81 Smith&Vantsiotis  0A0-48 101.6 355.6 304.8 20.93 272.22 0 437.4 

82 Smith&Vantsiotis  1A1-10 101.6 355.6 304.8 18.69 322.48 437.4 437.4 

83 Smith&Vantsiotis  1A3-11 101.6 355.6 304.8 18.03 296.68 437.4 437.4 

84 Smith&Vantsiotis  1A4-12 101.6 355.6 304.8 16.07 282.45 437.4 437.4 

85 Smith&Vantsiotis  1A4-51 101.6 355.6 304.8 20.55 341.87 437.4 437.4 

86 Smith&Vantsiotis  1A6-37 101.6 355.6 304.8 21.06 368.16 437.4 437.4 

87 Smith&Vantsiotis  2A1-38 101.6 355.6 304.8 21.68 348.99 437.4 437.4 

88 Smith&Vantsiotis  2A3-39 101.6 355.6 304.8 19.75 341.16 437.4 437.4 

89 Smith&Vantsiotis  2A4-40 101.6 355.6 304.8 20.34 343.83 437.4 437.4 

90 Smith&Vantsiotis  2A6-41 101.6 355.6 304.8 19.13 323.81 437.4 437.4 

91 Smith&Vantsiotis  3A1-42 101.6 355.6 304.8 18.41 322.04 437.4 437.4 

92 Smith&Vantsiotis  3A3-43 101.6 355.6 304.8 19.24 345.43 437.4 437.4 

93 Smith&Vantsiotis  3A4-45 101.6 355.6 304.8 20.82 357.09 437.4 437.4 
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94 Smith&Vantsiotis  3A6-46 101.6 355.6 304.8 19.93 336.27 437.4 437.4 

95 Smith&Vantsiotis  0B0-49 101.6 355.6 368.3 21.68 298.02 0 437.4 

96 Smith&Vantsiotis  1B1-01 101.6 355.6 368.3 22.06 294.90 437.4 437.4 

97 Smith&Vantsiotis  1B3-29 101.6 355.6 368.3 20.1 287.12 437.4 437.4 

98 Smith&Vantsiotis  1B4-30 101.6 355.6 368.3 20.82 280.67 437.4 437.4 

99 Smith&Vantsiotis  1B6-31 101.6 355.6 368.3 19.51 306.69 437.4 437.4 

100 Smith&Vantsiotis  2B1-05 101.6 355.6 368.3 19.17 257.98 437.4 437.4 

101 Smith&Vantsiotis  2B3-06 101.6 355.6 368.3 19 262.43 437.4 437.4 

102 Smith&Vantsiotis  2B4-07 101.6 355.6 368.3 17.48 252.20 437.4 437.4 

103 Smith&Vantsiotis  2B4-52 101.6 355.6 368.3 21.79 299.80 437.4 437.4 

104 Smith&Vantsiotis  2B6-32 101.6 355.6 368.3 19.75 290.45 437.4 437.4 

105 Smith&Vantsiotis  3B1-08 101.6 355.6 368.3 16.24 261.54 437.4 437.4 

106 Smith&Vantsiotis  3B1-36 101.6 355.6 368.3 20.41 317.90 437.4 437.4 

107 Smith&Vantsiotis  3B3-33 101.6 355.6 368.3 19 316.70 437.4 437.4 

108 Smith&Vantsiotis  3B4-34 101.6 355.6 368.3 19.24 310.03 437.4 437.4 

109 Smith&Vantsiotis  3B6-35 101.6 355.6 368.3 20.65 332.27 437.4 437.4 

110 Smith&Vantsiotis  4B1-09 101.6 355.6 368.3 17.1 306.91 437.4 437.4 

111 Smith&Vantsiotis  0C0-50 101.6 355.6 457.2 20.69 231.30 0 437.4 

112 Smith&Vantsiotis  1C1-14 101.6 355.6 457.2 19.24 237.97 0 437.4 

113 Smith&Vantsiotis  1C3-02 101.6 355.6 457.2 21.89 246.86 0 437.4 

114 Smith&Vantsiotis  1C4-15 101.6 355.6 457.2 22.68 261.99 0 437.4 

115 Smith&Vantsiotis  1C6-16 101.6 355.6 457.2 21.79 244.64 0 437.4 

116 Smith&Vantsiotis  2C1-17 101.6 355.6 457.2 19.86 248.20 437.4 437.4 

117 Smith&Vantsiotis  2C3-03 101.6 355.6 457.2 19.24 207.28 437.4 437.4 

118 Smith&Vantsiotis  2C3-27 101.6 355.6 457.2 19.31 230.63 437.4 437.4 

119 Smith&Vantsiotis  2C4-18 101.6 355.6 457.2 20.44 249.09 437.4 437.4 

120 Smith&Vantsiotis  2C6-19 101.6 355.6 457.2 20.75 248.20 437.4 437.4 

121 Smith&Vantsiotis  3C1-20 101.6 355.6 457.2 21.03 281.56 437.4 437.4 

122 Smith&Vantsiotis  3C3-21 101.6 355.6 457.2 16.55 249.98 437.4 437.4 

123 Smith&Vantsiotis  3C4-22 101.6 355.6 457.2 18.27 255.32 437.4 437.4 

124 Smith&Vantsiotis  3C6-23 101.6 355.6 457.2 19 274.44 437.4 437.4 

125 Smith&Vantsiotis  4C1-24 101.6 355.6 457.2 19.58 293.12 437.4 437.4 

126 Smith&Vantsiotis  4C3-04 101.6 355.6 457.2 18.55 257.09 437.4 437.4 
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127 Smith&Vantsiotis  4C3-28 101.6 355.6 457.2 19.24 304.69 437.4 437.4 

128 Smith&Vantsiotis  4C4-25 101.6 355.6 457.2 18.51 305.13 437.4 437.4 

129 Smith&Vantsiotis  4C6-26 101.6 355.6 457.2 21.24 318.92 437.4 437.4 

130 Smith&Vantsiotis  0D0-47 101.6 355.6 635 19.51 146.78 0 437.4 

131 Smith&Vantsiotis  4D1-13 101.6 355.6 635 16.07 174.81 437.4 437.4 

132 Subedietal 1A1 100 500 190 26 479 454 382 

133 Subedietal 1A2 100 500 190 29.6 750 455 493 

134 Subedietal 1B1 100 500 690 24.8 156 456 382 

135 Subedietal 1B2 100 500 690 29.6 299 457 493 

136 Subedietal 1C1 100 900 390 24.8 585 458 326 

137 Subedietal 1C2 100 900 390 28.4 970 459 330 

138 Subedietal 1D1 100 900 1290 36 247 460 326 

139 Subedietal 1D2 100 900 1290 33.2 422 461 330 

140 Subedietal 2A1 100 500 150 26 360 438 378 

141 Subedietal 2A2 100 500 190 22.72 615 438 322 

142 Subedietal 2C1 100 900 350 27.92 606 438 334 

143 Subedietal 2D1 100 900 1290 34.72 180 438 334 

144 Subedietal 2D2 100 900 1290 31.52 398 438 303 

145 Subedietal "3E1" 50 500 333.5 41.6 180 211 479 

146 Subedietal 4G1 100 900 395 41.6 1296 450 484 

147 Subedietal 4G2 100 900 845 43.2 1121 444 484 

148 Subedietal 4G3 100 900 395 43.2 1595 444 490 

149 Subedietal 4G4 100 900 845 41.6 922 450 490 

150 Tan&Lu 1-500-050 140 500 250 49.1 1700 0 520 

151 Tan&Lu 1-500-075 140 500 375 42.5 1400 0 520 

152 Tan&Lu 1-500-1 140 500 500 37.4 1140 0 520 

153 Tan&Lu 2-1000-050 140 1000 500 31.2 1750 520 520 

154 Tan&Lu 2-1000-075 140 1000 740 32.7 1300 520 520 

155 Tan&Lu 2-1000-1 140 1000 1000 30.8 870 520 520 

156 Tan&Lu 3-1400-05 140 1400 705 32.8 2350 520 520 

157 Tan&Lu 3-1400-075 140 1400 1050 36.2 1900 520 520 

158 Tan&Lu 3-1400-1 140 1400 1420 35.3 1600 520 520 

159 Tan&Lu 4-1750-05 140 1750 880 42.6 3272 520 520 
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160 Tan&Lu 4-1750-075 140 1750 1320 40.4 2480 520 520 

161 Tan&Lu 4-1750-1 140 1750 1760 44.8 2000 520 520 
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Database used for high  strength reinforced concrete deep beams 
No fc b le/d a/d rv rh r t Vn,test 

 MPa mm   % % % MPa 

1 49.1 130 4 0.5 0 0 1.56 9.88 

2 49.1 130 4 0.5 0.12 0.43 1.56 10.97 

3 49.1 130 4 0.5 0.22 0.43 1.56 10.86 

4 49.1 130 4 0.5 0.34 0.43 1.56 10.9 

5 49.1 130 4 0.85 0 0 1.56 6.17 

6 49.1 130 4 0.85 0.12 0.43 1.56 7.51 

7 49.1 130 4 0.85 0.22 0.43 1.56 7.02 

8 49.1 130 4 0.85 0.34 0.43 1.56 6.47 

9 49.1 130 4 1.25 0 0 1.56 5.19 

10 49.1 130 4 1.25 0.12 0.43 1.56 5.34 

11 49.1 130 4 1.25 0.22 0.43 1.56 5.86 

12 49.1 130 4 1.25 0.34 0.43 1.56 6.19 

13 49.1 130 4 2 0 0 1.56 1.73 

14 49.1 130 4 2 0.12 0.43 1.56 3.24 

15 49.1 130 4 2 0.22 0.43 1.56 3.65 

16 49.1 130 4 2 0.34 0.43 1.56 3.62 

17 49.1 130 3 0.5 0.12 0.43 1.56 11.47 

18 49.1 130 3 0.85 0.12 0.43 1.56 8.15 

19 49.1 130 3 1.25 0.12 0.43 1.56 5.81 

20 49.1 130 5 0.5 0.12 0.43 1.56 10.8 

21 49.1 130 5 0.85 0.12 0.43 1.56 8.73 

22 49.1 130 5 1.25 0.12 0.43 1.56 5.58 

23 50.67 120 4 0.5 0.13 0 1.29 5.79 

24 50.67 120 4 0.5 0.13 0.23 1.29 6.63 

25 50.67 120 4 0.5 0.13 0.47 1.29 8.17 

26 50.67 120 4 0.5 0.13 0.94 1.29 7.58 

27 50.67 120 4 0.85 0.13 0.47 1.29 6.54 
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28 50.67 120 4 0.85 0.24 0.47 1.29 6.01 

29 50.67 120 4 0.85 0.37 0.47 1.29 6.23 

30 50.67 120 4 1.25 0.13 0 1.29 3.56 

31 50.67 120 4 1.25 0.13 0.23 1.29 4.34 

32 50.67 120 4 1.25 0.13 0.47 1.29 4.61 

33 73.6 120 4 0.5 0.13 0 1.29 7.3 

34 73.6 120 4 0.5 0.13 0.23 1.29 9.03 

35 73.6 120 4 0.5 0.13 0.47 1.29 9.14 

36 73.6 120 4 0.5 0.13 0.94 1.29 9.11 

37 73.6 120 4 0.85 0.13 0.47 1.29 6.96 

38 73.6 120 4 0.85 0.24 0.47 1.29 6.84 

39 73.6 120 4 0.85 0.37 0.47 1.29 6.8 

40 73.6 120 4 1.25 0.13 0 1.29 4.85 

41 73.6 120 4 1.25 0.13 0.23 1.29 5.17 

42 73.6 120 4 1.25 0.13 0.47 1.29 5.64 
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APPENDIX B: MATLAB CODE  

MATLAB code used to train the artificial neural networks model in this study. 

clc 

clear all 

load data.mat; 

%T3=Input matrix 

%P3=Output matrix 

%RP3=Matrix contains max and min of input parameters 

%RT3=Matrix contains max and min of output parameters 

[P3n,minP3,maxP3,T3n,minT3,maxT3]=premnmx(P3,T3); 

[RP3n,minRP3,maxRP3]=premnmx(RP3); 

net=newff(RP3n,[5 5 1],{'logsig','logsig','purelin'},'trainb','learngdm','sse'); 

net.trainParam.epochs=5000; 

net.trainParam.goal=0.9; 

net.trainParam.max_fail=200; 

net.trainParam.mu_inc=2; 

net.trainParam.mu_dec=0.02; 

net.trainParam.mu_max=1e30; 

net.trainParam.show=500; 

[R,Q]=size(P3n); 

iitst=2:4:Q; 

iival=4:4:Q; 

iitr=[1:4:Q 3:4:Q]; 

val.P=P3n(:,iival); val.T=T3n(:,iival); 

test.P=P3n(:,iitst);test.T=T3n(:,iitst); 

P3tr=P3n(:,iitr); T3tr=T3n(:,iitr); 

[net,tr3,Y3,E3]=train(net,P3tr,T3tr,[],[],val,test); 

weights11=net.iw{1,1}; 

bias1=net.b{1}; 
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loglog(tr3.epoch,tr3.perf,'-',tr3.epoch,tr3.vperf,'--',tr3.epoch,tr3.tperf,'-.'); 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error MSE');xlabel('Number of Epochs'); 

[Ninput3]=tramnmx(P3,minP3,maxP3); 

[Noutput3]=sim(net,Ninput3); 

[output3]=postmnmx(Noutput3,minT3,maxT3); 

NuANN3=T3'./output3'; 

 

%Parametric study 
load para-fcf.mat; 

% a/h = 0.25,0.5,0.75,1.0,1.25,1.5,1.75   others constant 

[outfc1]=tramnmx(fc1,minP3,maxP3); 

[Noutfc1]=sim(net,outfc1); 

[Vfc1]=postmnmx(Noutfc1,minT3,maxT3); 

 

subplot(3,2,1) 

loglog(tr3.epoch,tr3.perf,'-',tr3.epoch,tr3.vperf,'--',tr3.epoch,tr3.tperf,'-.'); 

legend('Training','Validation','Test',-1); 

ylabel('Squared Error MSE');xlabel('Number of Epochs') 

 

subplot(3,2,2) 

plot(fcpa,Vfc1); 

xlabel('fc1'); 

ylabel('Vp'); 

 

% fc=15,20,25,30,35,40,45     others constant 

[outfc2]=tramnmx(fc2,minP3,maxP3); 

[Noutfc2]=sim(net,outfc2); 

[Vfc2]=postmnmx(Noutfc2,minT3,maxT3); 
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subplot(3,2,3) 

plot(fcp,Vfc2); 

xlabel('fc2'); 

ylabel('Vp'); 

 

[outfc3]=tramnmx(fc3,minP3,maxP3); 

[Noutfc3]=sim(net,outfc3); 

[Vfc3]=postmnmx(Noutfc3,minT3,maxT3); 

 

subplot(3,2,5) 

plot(fcpa,Vfc3); 

xlabel('fc3'); 

ylabel('Vp'); 

subplot(3,2,6) 

[m3,b3,r3]=postreg(output3,T3); 

 


