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Abstract

ABSTRACT

The artificial neural networks (ANN) was used to develop a number of models
in order to predict the ultimate shear strength of reinforced concrete deep
beams for both normal and high concrete compressive strength. In this study a
large number of experimental results database was collected carefully from
previous studies. This database contained 161 and 42 experimental results for
normal and high strength respectively.

From the performed literature review a number of 7 variables were identified
as input parameters for the ANN model for both normal and high strength
concrete, whereas the output parameter was the ultimate shear strength.

The feed forward back propagation neural network was used to build up the
required model. Using the trial and error technique the topology of the neural
networks was obtained.

The ANN model was found to successfully predict the ultimate shear strength
of deep beams within the range of the considered input parameters. The
average ratio of the experimental shear strength to predicted shear strength
using the ANN model is 1.04 for normal strength concrete and 1.002 for high
strength concrete. The ANN shear strength predicted results were also
compared to those obtained using the American Concrete Institute (ACI) code
318.02. The results show that ANN have strong potential as a feasible tool for
predicting the ultimate shear strength of both normal and high strength RC
deep beams within the range of input parameters.

The trained neural network model was used to perform a parametric study to
evaluate the effect of the input parameters on the utilized ultimate shear

strength of deep beams .
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LIST OF ABBREVIATIONS (NOTATIONS)

Notation

Shear span.
The American Concrete Institute.

Minimum amount of flexural reinforcement.

Total area of vertical reinforcement spaced at s, in the

horizontal direction at both faces of the beam.

Total area of horizontal reinforcement spaced at s, in the

vertical direction at both faces of the beam.

The cross- sectional area at one end of the strut.

Width of the beam.

Web width.

Effective depth; distance from extreme compression fiber to

centroid of tension reinforcement.

Specified yield strength of non pre stressed reinforcement.
yield stress of horizontal web reinforcement
yield stress of vertical web reinforcement

The force in a strut or tie, or the force acting on one face of a
nodal zone, due to the factored loads.

The nominal strength of the strut, tie, or nodal zone.
Square root of specified compressive strength of concrete.
Over all depth of the beam

Span length of the beam.
Effective span length.
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min

max

'n‘ ‘\w :v

N

=

Py

Ph

Variable value.

Minimum value of the variable.
Maximum value of the variable.

The normalized value.
Spacing of shear or tension reinforcement measured in a
direction parallel to longitudinal reinforcement.

Spacing of vertical web shear reinforcement.

Spacing of horizontal web shear reinforcement.

The factored shear force.

The normal shear resisting force of the plain concrete.
The force resisted by the shear reinforcement :
Nominal shear strength.

The distance of the failure plane from the face of the support.

Longitudinal steel reinforcement ratio.
Vertical shear reinforcement ratio.
Horizontal shear reinforcement ratio.

The strength reduction factor.
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Introduction

1. INTRODUCTION

1.1 BACKGROUND

Reinforced concrete (RC) deep beams are used for load distribution in a wide
range of structures; for example in tall buildings, offshore gravity structures, as
transfer girders, pile caps, folded plates, and foundation walls, also shear walls
are considered as cantilever deep beam. Deep beams are often located on the
perimeter of framed structures where they provide stiffness against horizontal

loads.

By increasing the depth of the beam while keeping the span length constant, the
member becomes so stiff that the applied load is effectively carried through
tension and compression zones, see Fig 1.1, rather than by bending and shear.
This can be referred to as membrane action although historically such
members are known as deep beam [29,71, 74].

The structural behavior of deep beams differs from that of shallow beams
because of the small ratio between shear span and the depth. In contrast to
shallow beams, the response is characterized by nonlinear strain distribution

even in the elastic range [7].
The ultimate shear strength of deep beams can be predicted using various

methods. These methods comprise the ACI code and Strut-and-Tie model
which is also included on the ACI 318-02 Code.
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s Vv

(a) Deep beam[74 ].

(b) Strut-and —tie behavior

(membrane action) [74 ].
\<

(c) Tension and compression zones [71].

FC

Figure 1-1: Deep Beam (Short Beam)

1.2 NEURAL NETWORKS IN CIVIL ENGINEERING

Artificial Neural Networks (ANN) are one of the artificial intelligence
methods, they are widely used to approximate complex systems that are
difficult to model using conventional modeling techniques such as
mathematical modeling [26,35,41]. They are applied in several civil

engineering problems such as structural, geotechnical, management etc.

1.3 PROBLEM STATEMENT

The basic problem of deep beams emerges from the fact that a number of
parameters affecting shear behavior have led to a limited understanding of
shear failure mechanism and predicting of exact shear strength [60]. Although
there were a large number of researches carried out, there is no agreed rational

procedure to predict the strength of reinforced concrete deep beams [8,7]. This
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is mainly due to the highly nonlinear behavior associated with the failure of the
reinforced concrete beams.

Ashour, et al [8] mentioned that the design of deep beams has not yet been
covered by the British Standards Institution (BS8110). He mentioned that
comparisons between experimental results and predictions from other codes,
such as ACI, show poor agreement in prediction of ultimate shear strength.
Therefore, the author believes that there is still a strong need to introduce the

ability to predict the ultimate shear strength of deep beams.

1.4 RESEARCH OBJECTIVES

The objectives of this study are summarized as follows:

= Develop a neural network model which can predict the ultimate shear
strength of deep beams.

= Carry out a parametric study using the trained neural network to obtain the
significance of each parameter affecting the shear strength of deep beams.

= Compare the predicted strength of deep beams using neural networks with

those calculated from ACI 318-02 equations.

1.5 RESEARCH METHODOLOGY

The objectives of this study will be achieved through performing the following

tasks:

= Conduct a literature survey to obtain the necessary researches in strength
and behavior of RC deep beams .This will enhance the understanding of
the physical problem. The Islamic University-Gaza (IUG) library, the
Internet facilities and the connections with people abroad have been used to
carry out the literature survey.

= Conduct a literature survey on the use of artificial neural networks (ANN)
in civil engineering applications, paying special attention on the use of

ANN in deep beams.
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= Obtain as much experimental test results as possible from the previous
reliable studies. These experimental results are used for training the neural
network model.

= MATLAB software toolbox of the neural networks was used in modeling a

neural network

1.6 THESIS LAYOUT

The current study was divided into six chapters as follows :

Chapter one is an introductory chapter defines the problem statement, the
objectives of this study, the methodology and an overview of this study.
Chapter two presents the definitions of deep beams, their problem, behavior,
strength, and the previous studies performed.

Chapter three deals with the fundamentals of ANN showing their definition,
the terminology used, as well as the advantages and disadvantages of them. The
mechanism of ANN, their architecture types, algorithms used for training them
are also reviewed. Finally, several applications of ANN used by researchers in
civil engineering are included.

Chapter four explains the modeling of deep beams using artificial neural
networks. This chapter also discusses the collection stage of the experimental
data, pre processing of the training data, training and the performance of the
developed model .

Chapter five presents a parametric study in which the influence of each
parameter on the ultimate strength of deep beams in both cases the normal and
high concrete compressive strength.

Chapter six presents conclusions and recommendations for future work.
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2. STRENGTH AND BEHAVIOR OF DEEP BEAMS

2.1 INTRODUCTION

A deep beam is a beam in which a significant amount of the load is transferred

to the supports by a compression thrust joining the load and the reaction [2].

The transition from reinforced concrete shallow beam behavior to that of deep
beam is imprecise. For example, while the ACI code [10], CEB-FIP model
code [11] and CIRIA Guide 2 [12] use the span/depth ratio limit to define RC
deep beams, the Canadian code [13] employs the concept of shear span/ depth
ratio. CEB-FIP model code treats simply supported and continuous beams of
span/depth ratios less than 2 and 2.5, respectively, as deep beams [8].

ACI code 318-95 classifies the beam as a deep beam for flexural if the clear-
span/overall-depth ratio is < 1.25 for simply supported beams and 2.5 for
continuous beams and as deep beams for shear if the clear-span /effective-
depth ratio is <5 for simply supported beams loaded on one face and supported
on the opposite face so that compression struts can develop between loads and

supports [7].

ACI code 318-02 defines deep beams as members loaded on one face and
supported on the opposite face so that compression struts can develop between
the loads and the supports, and have either: clear spans equal to or less than
four times the overall member depth; or regions loaded with concentrated loads

within twice the member depth from the face of the support [6].
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The span—to-depth ratios in the definition of deep beams in the 1999 and earlier
codes were based on papers published in 1946 and 1953. The definitions of
deep beams given in clause 10.7.1 and 11.8.1 of these earlier codes were
different from each other and different from the 2002 code definition that based
on D- region behavior [6].

The Euro code defines a beam as a deep beam if the cross sectional depth to the

effective span length is greater than the following limits [9], see Fig 2.1 :

o for simple beam hll, >0.5

e for end span of continuous beams hll,>0.4

e for inner spans of continuous beams hill, >0.3

o for cantilever beams hill, >1.0
Where:

h = depth of the beam.

1, = effective span length.

Deep beams can be classified according to their concrete compressive strength
as normal or high. The high strength concrete is a type of high performance
concrete. ACI defines a high strength concrete as concrete that has a specific
compressive strength for design of 41MPa (6000psi) or greater, other countries
use a higher compressive strength in their definitions of high strength concrete
with 48MPa (7000psi) minimum [78,79].

A comparison between deep beams and ordinary beams is shown in table 2.1

[3]:
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Table 2-1: Comparison between Deep Beams and Ordinary Beams

No. Deep Beam Ordinary beam

1 Plane section before bending does | Plane section before bending remains
not remain plane after bending. plane after bending.

2 Shear deformations become Shear deformation is neglected.
significant compared to pure
flexure.

3 The stress block is non linear even | The stress block can be considered
at elastic stage. linear at elastic stage.

4 It is subjected to two dimensional It is subjected to one dimensional
state of stress. state of stress.

5 The resulting strain is non linear. The strain is linear.

2.2 PROBLEM OF DEEP BEAMS

The behavior and design of reinforced concrete beams in shear remains an area
of concern for structural engineers due to the sudden and brittle failure of
reinforced concrete beams dominated by shear action and due to the lack of
rational design equations in building codes. The shear failure modes, the
resisting mechanisms at cracked stages, and the role of various parameters are

presently under discussion and subject to debates among researchers [40].

Although there were a large number of researches carried out, there is no
agreed rational procedure to predict the strength of RC deep beams. This is
mainly due to the highly nonlinear behavior associated with the failure of the

reinforced concrete beams [7,8].

Unfortunately, no accurate theory exists for predicting the ultimate shear
strength of deep reinforced concrete beams. Also the great number of
parameters that affect the beam strength has led to a limited understanding of
shear failure. In addition of existing several equations, none of them produce an

accurate result [7]. Neural networks were successfully used by many researches
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as a molding technique. Therefore, this thesis aims at using the neural networks

technique in studying and predicting the ultimate shear strength of deep beams.

2.3 BEHAVIOR OF DEEP BEAMS

In deep beams a significant amount of load is carried to supports by a
compression thrust joining the load and the reaction. This compression in the
diagonal direction combined with the tension along the beam bars constitute
the basis for the strut-and-tie model. This tied arch action is recognized as the
force-transferring mechanism of deep beams. The failure of a deep beam may
occur because of crushing of a compression strut or loss of a beam bar

anchorage [54].

In general, deep beams are governed by shear, rather than flexural. A large
amount of compressive forces are directly transferred to supports by “Arch
action”. A linear elastic analysis is only valid while the deep beam remains un-
cracked. However in practice tensile cracks develop in most deep beams
between one-third and one-half of the ultimate loads. Therefore, tension
reinforcement governs the design of the deep beams. Since the main loads and
reactions act in the plane of the member, a state of plane stress in the concrete

can be calculated approximately [4].

The basic parameters that control the shear strength of deep beams, based on
previous research works as in [7], are shown in Fig. 2.1. These parameters are:

The effective span of beam (7 ), width of beam (5 ), effective depth of beam

(d), shear span (a), cylinder compressive strength of concrete (fc\), yield

strength of horizontal steel (fyh), yield strength of vertical steel (f,,),
reinforcement ratio of horizontal steel (p,), reinforcement ratio of total

horizontal tensile steel (p,), and reinforcement ratio of transverse steel (p, ).
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Figure 2-1: Basic parameters for shear strength prediction of simply supported deep beam:
(a) Deep beam; (b) Cross section[7].

In addition to those listed above, there are more parameters that are also critical
in deep beam behavior. These are anchorage of longitudinal steel into supports
and size of bearing and loading areas [7]. Tests have shown that vertical shear
reinforcement is more effective than horizontal shear reinforcement [6]. Crack
shape in deep beam would almost be vertical or follow the direction of the
compression trajectories, with the beam almost shearing off from the support in
a total shear failure. Hence, in the case of deep beams, horizontal reinforcement
to resist the vertical crack is needed throughout the height of the beam, in

addition to vertical shear reinforcement along the span.

To resist the high tensile stresses at the lower regions of the deep beam, it is
needed to concentrate horizontal reinforcing bars in the lower fiber. The

allowable concrete shear resistance ¥, of the deep beam is higher than of

ordinary beam because of the great ratio of depth/ span [3].

2.4 REVIEW OF PREVIOUS STUDIES

Siao [51] used the strut-and-tie approach, to examine the ability of it in the
analysis of shear strength of deep beams with web openings. The results

showed that it could be used. On the other hand strut-and-tie model can be
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applied to beams with rectangular openings whose horizontal dimensions
ranges from 0.1 to 0.4 times the clear span and vertical dimension ranges from
0.1 to 0.4 times the beam height, moreover when the opening is small, a more
accurate prediction is obtained, this aspect has not been conclusively dealt with

by earlier researchers .

Goh [42] used the artificial neural network ANN to predict the ultimate shear
strength of deep beams. The neural network predictions were more reliable
than predictions using other conventional methods such as ACI and Strut-and-

Tie model.

Tan et al [52] studied the variations of the effective span and shear span on the

high strength concrete deep beams.

Foster and Gilbert [53] studied the crack patterns and failure mechanisms of
high strength concrete deep beams by the aid of experimental data.

Tan and Lu [54] investigated the shear behavior of large reinforced concrete
deep beams experimentally and a comparison with different codes of practice

was made.

Ashour and Rishi [55] tested reinforced concrete continuous deep beams with
openings, the modes of failure were observed, depending on the position of the

web openings.

Hwang and et al [56] predicted the shear strength of deep beams using strut-

and-tie model in order to improve the current deep beam design procedure.

Teng et al [57]investigated experimentally the shear strength of concrete deep
beams under fatigue loading, the investigation showed that the relevant ACI

equations can be applied to deep beams under fatigue or repeated loading once

10
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the properties of the concrete and reinforcement are adjusted to take account of

the effect of fatigue loading.

Oh and Shin [60] tested reinforced high strength deep beams to determine their
diagonal cracking and ultimate shear capacities.

Sanad and Saka [7] used the artificial neural network in predicting the ultimate
shear strength of reinforced-concrete deep beams and the results obtained were
compared with the experimental values and with those determined from the
ACI code method, strut —and-tie method, and Mau-Hsu method. It was clear
that the performance of the neural network in predicting the shear strength is
much more accurate than the methods considered. It is noticed that, although
the average ratio of actual and predicted shear strength was 2.08 in the ACI

code method, the same ratio is only 0.97 in the neural network.

Aguilar et al [59] evaluated experimentally the design procedure for the shear
strength of deep reinforced concrete beams, the behavior of the beep beams
was described in terms of cracking pattern, load-versus-deflection response,

failure mode, and strain in steel reinforcement and concrete .

Zararis [59] described theoretically the shear compression failure in reinforced

concrete deep beams.

Ashour et al [8] performed an empirical modeling of shear strength of
reinforced concrete deep beam by genetic programming (GP), which is a new
form of artificial intelligence, good agreement between the model predictions
and experiments has been achieved. The GP model predicts the following

behavior between the shear strength and the influencing parameters:
e The shear span to depth and main longitudinal bottom reinforcement
ratios have the most significant effect on the shear strength of RC deep

beams.

11
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e The shear strength is inversely proportional to the shear span-depth
ratio; the higher the shear span to depth ratio, the less the shear strength.

e The shear strength increases with the increase of the main longitudinal
bottom reinforcement ratio up to a certain limit beyond which no
improvement can be achieved.

e The effect of the beam span to depth ratio and web reinforcement on the

shear strength is very small.

2.5 PREDICTION OF THE ULTIMATE SHEAR STRENGTH OF DEEP
BEAMS

The ultimate shear strength of deep beams can be predicted using various

methods. Some of these methods are explained in the following subsections:

2.5.1 Shear Strength of Deep Beams from ACI 2002 Code

According to the ACI 318-02, deep beams shall be designed either taking into
account nonlinear distribution of strain, or by using Appendix A which deals
with the Strut-and-Tie model. Lateral buckling shall be considered. While the
critical section for calculating the factored shear force Vu is taken at distance d
from the face of the support in normal beams, the shear plane in deep beams is

considerably steeper in inclination and closer to the support [50].

The factored shear force Vu has to satisfy the following condition:
V, < ¢@0\/7£ b,d ) (2.1)

Where:
\.f'. =square root of specified compressive strength of concrete, (psi)

by = web width, (in.)

12
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d = distance from extreme compression fiber to centroid of longitudinal
tension reinforcement, but need not be less than 0.80h for circular sections and

pre-stressed members, (in.)

If the condition is not satisfied, the section has to be enlarged .The strength

reduction factorg =0.75. The present ACI Code does not give guidance on

determining the shear value Vu of the plain concrete or the maximum
permissible value, although the shear capacity of the plain concrete in the deep

beam has to be considerably higher than in normal beams as previously

discussed. A value of ¥, < 6.0\/76'de

can be used for deep beams as compared to the limit value of 7, < 3.5\/7C'bwd

in normal beams.
In the strut-and —tie approach given in section 6.11 of the Code, compressive
force in the strut and tensile force in the ties are used for determining the

necessary reinforcement in lieu of the approach presented in this section.

The normal shear resisting force ¥, of the plain concrete can be taken as

V.d —
M )bwd <6 fc bwd (22a)

M
V. =(3.5- 2.5ﬁ)(1.91/f6\ + 25000 pw

where1.0<3.5—2.5(Mu )sZ.S.This factor is a multiplier of the basic

V.d
equation for 7, in normal beams to account for the higher resisting capacity of

deep beams. If some minor unsightly cracking is not tolerated, the designer can

use

V.=2yf.'b,d (2.2b)

13
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When the factored shear ¥, exceeds ¢V, shear reinforcement has to be provided
such thatv, <¢(v,+7,), where ¥, is the force resisted by the shear

reinforcement:

2.3)

where:

A,= total area of vertical reinforcement spaced at s, in the horizontal direction

at both faces of the beam;

A, = total area of horizontal reinforcement spaced at s, in the vertical direction

at both faces of the beam .

Maximum spacing s, < d or 12in.
5 (2.4a)
whichever is smaller

or 12 in

Maximum spacings, < %

(2.4b)

and

minimum 4, = 0.0015bs,

minimum A4, = 0.0025bs,

The shear reinforcement required at the critical section must be provided
throughout the deep beams.

In the case of continuous deep beams, because of the large stiffness and the
negligible rotation of the beam section at the supports, the continuity factor at
the first interior support has a value close to 1.0. Consequently, the same
reinforcement for shear can be used in all spans for all practical purpose if all

the spans are equal and similarly loaded [50].

14
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2.5.2 Strut-and-Tie Model from ACI 2002

The strut-and-tie model STM has been introduced in the new AASHTO LRFD
Specifications (1994), which was its first appearance in a design specification
in the US. It was also included in ACI 318-02 Appendix A [14].

The Strut-and-Tie is a unified approach that considers all load effects (Bending
moment, normal force, shear force, and tension force) simultaneously. It is a
powerful tool for the design of what is known as “discontinuity” or “disturbed”
regions in reinforced and pre stressed concrete structures. These regions are
normally referred to as the D-regions. These are regions where a complex state
of stress and strain develops. Examples of D-regions include corbels, deep

beams, joints, walls with openings, anchorage zones and so on, see Fig 2.2.

hlk&’ £, éﬂ
h{%, 4
“h h
. = 5}1 o

H—ITNHTN

Figure 2-2: D-regions (shaded areas) with nonlinear strain distribution due to (a)
Geometrical discontinuities. (b) Statically and/or geometrical discontinuities [5,6].
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The STM idealizes the D-region by a system of truss members that serve to
carry the load to the boundaries of the D-region. The truss model consists of
compression struts (concrete) and tension ties (reinforcing bars). So this model
provides a rational approach by representing a complex structural member with
an appropriate simplified truss models. Although there is no single, unique
STM for most design situations encountered, there are, however, some
techniques and rules, which help the designer develop an appropriate model [5,
6,14].

The deep beam stress and its Strut-and-Tie model is shown in Fig 2.3.

(b)Truss model

.-"!\
Lo

i S

-
|
SN
/ |
—

(c) Crack pattern in test (d) Simplified trués
Figure 2-3: Deep beam stresses and its STM model [14]

Strut —and-tie model design procedure according to ACI 318-02

It shall be permitted to design structural concrete members, or D-region in such
members, by modeling the member or region as an idealized truss. The strut-
and-tie model shall be in equilibrium with the applied loads and the reactions.
The angle between the axes of any strut and tie entering a single node shall not
be taken as less than 25 degrees. Design of struts, ties, and nodal zones shall be

on
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where:

Fu is the force in a strut or tie, or the force acting on one face of a nodal zone,
due to the factored loads, Fn is the nominal strength of the strut, tie, or nodal
zone; and P is the strength reduction factor 0.75.
Strength of Struts
The nominal compressive strength of a strut without longitudinal reinforcement
shall be taken as the smaller value of

Ey = JaA
at the two ends of the strut, where A_is the cross- sectional area at one end of

the strut, and £, is the smaller of (a) and (b):

(a)- The effective compressive strength of the concrete in the strut shall be

taken as

f..=0858.f.

(b)- The effective compressive strength of the concrete in a nodal zone shall
not exceed the value given by:

o =085, 1,

where the value of g, is given in Table 2.2.

The use of compression reinforcement shall be permitted to increase the
strength of a strut. Compression reinforcement shall be properly anchored,
parallel to the axes of the strut, located within the strut. The strength of a

longitudinally reinforced strut is:

an = »f;‘HAC + A;‘f;‘l

Strength of ties

The nominal strength of a tie shall be taken as
F, = Af, + 4,1, +4f,)
where (7, +4f,) shall not exceed f, and 4, is zero for non pre stressed

members.

17
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Table 2-2: Stress Limits and Strength Reduction Factors According to ACI 318-02

Appendix A [1,7]

Stress Limits, 1,

Struts: £, =0.854. f

where:

£, =1.00 for prismatic struts in un cracked compression zones

B, = 0.40 for struts in tension members

LS, = 0.75struts may be bottle shaped and crack control reinforcement is
included

L, = 0.60 struts may be bottle shaped and crack control reinforcement is
not included

L, =0.60for all other cases

f. =specified concrete compressive strength

Note:

Crack control reinforcement requirement is " p,, sin y, > 0.003, where

P = steel ratio of the i-th layer of reinforcement crossing the strut under

review, and ™ = angle between the axis of the strut and the bars.

Nodes: f,, =0.854, f.

where:

£, =1.00when nodes are bounded by struts and/or bearing areas
p, = 0.80when nodes anchor only one tie
B, = 0.60when nodes anchor more than one tie

Strength Reduction Factors, ¢

‘ ¢ = 0.75 for struts, ties, and nodes

18
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3. ARTIFICIAL NEURAL NETWORKS

3.1 INTRODUCTION

Acrtificial Neural Networks (ANN) are widely used to approximate complex
systems that are difficult to model using conventional modeling techniques
such as mathematical modeling [26,35,41]. They are applied in several civil

engineering problems structural, geotechnical, management etc.

This chapter presents the fundamentals of ANN showing the history, definition,
terminology used, as well as advantages and disadvantages. The mechanism of
ANN, architecture classes, algorithms used for training are also reviewed.

Finally, several applications of ANN used in civil engineering are included.

3.2 DEFINITION OF ARTIFICIAL NEURAL NETWORKS

An artificial neural network is an assembly (network) of a large number of
highly connected processing units, the so-called nodes or neurons. The neurons
are connected by unidirectional communication channels (connections). The
strength of the connections between the neurons is represented by numerical
values which normally are called weights. Knowledge is stored in the form of a
collection of weights. Each neuron has an activation value that is a function of
the sum of inputs received from other nodes through the weighted connections
[28,41].

Also ANN can be defined as a form of artificial intelligence, which by means
of their architecture, attempt to simulate the biological structure of the human

brain and nervous system [22,26].
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3.3 TERMINOLOGY USED IN ARTIFICIAL NEURAL NETWORK

The definition of the terms used in Figure 3.1 is presented in the following

paragraphs:

Layer

First Hidden Second
layer Hidden Layer

Input Neuron w Vector Input

f " ™
Where...

P&
P, v . q R = number of
% > P f > elements in
: . - input vector
'P.'-e “:I B ld
/1 v

a=fWp +&)

Figure 3-1: Typical Structure of ANN[21,35]

Neuron (artificial): A simple model of a biological neuron used in neural

networks to perform a small part of some overall computational problem. It has

inputs from other neurons, with each of which is associated a weight - that is, a

number which indicates the degree of importance which this neuron attaches to

20
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that input. It also has an activation function, and a bias. It is the processing

element in ANN and they are called nodes also [23,30].

Weight: A weight, in an artificial neural network, is a parameter associated
with a connection from one neuron, M, to another neuron N. It determines how
much notice the neuron N pays to the activation it receives from neuron M
[30].

Input unit: An input unit -in a neural network- is a neuron with no input
connections of its own. Its activation thus comes from outside the neural net
[30].

Output unit: An output unit in a neural network is a neuron with no output
connections of its own. Its activation thus serves as one of the output values of
the neural net [30].

Bias: In feed-forward and some other neural networks, each hidden unit and
each output unit is connected via a trainable weight to a unit (the bias unit) that

always has an activation level of -1[30].

Epoch: In training a neural net, the term epoch is used to describe a complete
pass through all of the training patterns. The weights in the neural net may be
updated after each pattern is presented to the net, or they may be updated just
once at the end of the epoch. Frequently used as a measure of speed of learning

- as in "training was complete after x epochs"[30].

Hidden layer: Neurons or units in a feed forward net are usually structured
into two or more layers. The input units constitute the input layer. The output
units constitute the output layer. Layers in between the input and output layers

(that is, layers that consist of hidden units) are termed hidden layers.

21
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In layered nets, each neuron in a given layer is connected by trainable weights

to each neuron in the next layer [30].

Hidden unit / node: A hidden unit in a neural network is a neuron which is
neither an input unit nor an output unit [30].

A learning algorithm is a systematic procedure for adjusting the weights in
the network to achieve a desired input/output relationship, i.e. supervised

learning [26].

Note: The most popular and successful learning algorithm used to train

multilayer neural networks is currently the back-propagation routine [26].

3.4 ADVANTAGES AND DISADVANTAGES OF ARTIFICIAL
NEURAL NETWORKS

Artificial neural networks have many advantages that made it increasingly
used in several applications by many researchers. Some of these advantages
can be summarized below:

1- ANN are well suited to model complex problems where the relationship

between the model variables is unknown [26].

2- Neural networks has the capability of producing correct or nearly correct
outputs when presented with partially incorrect or incomplete inputs
[28].

3- ANN do not need any prior knowledge about the nature of the
relationship between the input/output variables, which is one of the
benefits that ANN have compared with most empirical and statistical
methods [26].
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4- ANN can always be updated to obtain better results by presenting new

training examples as new data become available [26].

5- Artificial Neural Networks have the advantage that it gives you the
output without the need to perform any manual work such as using

tables, charts, or equations [22].

6- It is often faster to use neural networks than a conventional approach
[23].

7- Engineers often deal with incomplete and noisy data which is one area

where ANN are most applicable [69].

8- ANN can learn and generalize form examples to produce meaningful

solutions to problems [69].

9- Data presented for training ANN can be theoretical data, experimental
data, empirical data based on good and reliable experience or a
combination of these [69].

Although the artificial neural networks have advantages, on the other hand

there are disadvantages. Some of these are listed below:

1- The principal disadvantage being that they give results without being
able to explain how they arrive at their solutions. Their accuracy
depends on the quality of the trained data and the ability of the

developer to choose truly representative sample inputs [62].

2- There is no exact available formula to decide what architecture of ANN
and which training algorithm will solve a given problem. The best
solution is obtained by trial and error. One can get an idea by looking at

a problem and decide to start with simple networks; going on to
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complex ones till the solution is within the acceptable limits of error
[35].

3- The individual relations between the input variables and the output
variables are not developed by engineering judgment so that the model
tends to be a black box or input/output table without analytical basis
[63].

The advantages appear to outweigh the disadvantages [63].

3.5 MECHANISM OF ARTIFICIAL NEURAL NETWORKS

Briefly neural networks are composed of simple elements operating in parallel.
The network function is determined largely by the connections between
elements. We can train a neural network to perform a particular function by

adjusting the values of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown below Fig 3.2.
There, the network is adjusted, based on a comparison of the output and the

target, until the network output matches the target.

Target

Neural Network

R including connections
(called weights)

Input between neurons Cutput

Compare

Adjust
weights

Figure 3-2: Neural Networks Concept [21].
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Batch training of a network proceeds by making weight and bias changes based
on an entire set (batch) of input vectors. Incremental training changes the
weights and biases of a network as needed after presentation of each individual
input vector. Incremental training is sometimes referred to as "on line" or
"adaptive" training. Today neural networks can be trained to solve problems

that are difficult for conventional computers or human beings [29].

3.6 TYPES OF ARTIFICIAL NEURAL NETWORK

Basically, neural networks can be classified according to their connection
geometries. One of the simplest architectures is the layered feed-forward
network [31].

3.6.1 Single-Layer Feed forward Networks

In a layered neural network the neurons are organized in the form of layers. In
the simplest form of a layered network, we have an input layer of source nodes
that projects into an output layer of neurons (computation nodes), but not vice
versa. In other words, this network is strictly a feed forward or cyclic type. It is
illustrated in Fig. 3.3 for the case of nodes in both the input and output layers.
Such a network is called a single-layer network, with the designation "single-
layer" referring to the output layer of computation nodes (neurons). We do not
count the input layer of source nodes because no computation is performed
there [18].
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Figure 3-3: Feed forward or acyclic network with a single layer of neurons [48].

3.6.2 Multilayer Feed forward Networks

The second class of a feed forward neural network distinguishes itself by the
presence of one or more hidden layers, whose computation nodes are
correspondingly called hidden neurons or hidden units. The function of hidden
neurons is to intervene between the external input and the network output in

some useful manner Fig 3.4.

The architecture graph in Fig 3.4 illustrates the layout of a multilayer feed
forward neural network for the case of a single hidden layer. For brevity the
neural network in Fig 3.4 is referred to as a 6-4-2 network because it has 6
source neurons, 4 hidden neurons, and 2 output neurons. As another example, a
feed forward network with m source nodes, h1l neurons in the first hidden layer,
h2 neurons in the second hidden layer, and g neurons in the output layer is
referred as an m-h1-h2-q [18].

The neural network in Fig 3.4 is said to be fully connected in the sense that
every node in each layer of the network is connected to every other node in the
adjacent forward layer. If, however, some of the communication links (Synaptic
connections) are missing from the network, we say that the network is partially

connected [18].
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3.6.3 Recurrent Networks

A recurrent neural network distinguishes itself from a feed forward neural
network in that it has at least one feedback loop. Recurrent neural networks
(RNN) have a closed loop in the network topology. They are developed to deal
with the time varying or time-lagged patterns and are usable for the problems
where the dynamics of the considered process is complex and the measured

data is noisy).

Hidden layer Qutputs

INFUT
LAYER

HIDDEN

LAYER

(there may be zeveral
hidden layers)

QUTPUT
LAYER

Figure 3-4: Fully connected feed forward network[18,67].

The RNN can be either fully or partially connected. In a fully connected RNN
all the hidden units are connected recurrently, whereas in a partially connected
RNN the recurrent connections are omitted partially. For example, a recurrent

network may consist of a single layer of neurons with each neuron feeding its
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output signal back to the inputs of all the other neurons, as illustrated in the
architectural graph in Fig 3. 5 [18,67].

5

Inputs

]

Qutput

Figure 3-5: Recurrent network with no self-feedback loops and no hidden neurons [48].

3.7 EUNCTIONS USED IN DEVELOPING ANN

There are many types of functions used by ANN among which training and

transfer functions are listed below:

3.7.1 Training Functions

The MATLAB toolbox now has four training algorithms that apply weight and
bias learning rules, namely: Batch training function “trainb”, Cyclical order
incremental training function “trainc”, Random order incremental training

function “trainr”, and Sequential order incremental training function “trains”.

All four functions present the whole training set in each epoch (pass through
the entire input set) [21].
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3.7.2 Transfer (activation) Functions

In neural networks, an activation function is the function that describes the
output behavior of a neuron .They can be linear or nonlinear [21].

Three of the most commonly used functions are shown below in Fig 3.6.

Hard-Limit Transfer Function a

Linear Transfer Function i

Log-Sigmoid Transfer Function a

a = logsig(n}

Figure 3-6: Three of the most commonly used transfer functions[21]

-The hard-limit transfer function shown Fig. 3.6 limits the output of the neuron
to either O, if the net input argument n is less than 0; or 1, if n is greater than or
equal to 0.

-Neurons of Linear Transfer Function shown Fig. 3.6 are used as linear
approximations in “Linear Filters”.

- The sigmoid transfer function shown in Fig. 3.6 takes the input, which may have any
value between plus and minus infinity, and squashes the output into the range 0 to 1.

This transfer function is commonly used in back propagation networks, in part
because it is differentiable [21].
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3.8 ALGORITHMS USED FOR TRAINING ARTIFICIAL NEURAL
NETWORK

There are several types of neural networks according to the algorithms used in
the training process. The following paragraphs presents some of these training

algorithms:

3.8.1 Back-propagation Neural Networks

The most popular type of neural networks is the back propagation neural
network (BP). Back-Propagation is a mathematical procedure that starts with
the error at the output of a neural network and propagates this error backwards
through the network to yield output error values for all neurons in the network.
BP is a feed forward network that uses supervised learning to adjust the
connection weights. In a feed forward network, the results of each layer are fed
to each successive layer. A conventional BP uses three layers of nodes, but it
can use more middle layers. The first layer, the input nodes, receives the input
data (also called the middle layer or the hidden layer). The results of the first
layer are passed to the next layer. This process is repeated for each layer until
an output is generated. The difference between the generated output and a
training set output is calculated. This difference is fed back to the network
where it is used for connection weight readjustment by iteratively attempting to
minimize the difference to within a predefined tolerance. The BP can learn

many different output patterns simultaneously with dramatic accuracy [32,64].

3.8.2 Radial Basis Neural Networks

Radial Basis Functions are powerful techniques for interpolation in
multidimensional space. A Radial Basis Function (RBF) is another type of
feed-forward ANN Fig 3.7. Typically in a RBF network, there are three layers:
one input, one hidden and one output layer. Unlike the back-propagation
networks, the number of hidden layer can not be more than one. The hidden

layer uses Gaussian transfer function instead of the sigmoid function. In RBF
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networks, one major advantage is that if the number of input variables is not
too high, then learning is much faster than other type of networks. However,
the required number of the hidden units increases geometrically with the
number of the input variables. It becomes practically impossible to use this

network for a large number of input variables.

The hidden layer in RBF network consists of an array of neurons that contains
a parameter vector called a ‘radial center’ vector. The hidden layer performs a

fixed non-linear transformation with non-adjustable parameters.

The approximation of the input-output relation is derived by obtaining a
suitable number of neurons in the hidden layer and by positioning them in the
input space where the data is mostly clustered. At every iteration, the position
of the radial centers, its width (variation) and the linear weights to each output
neuron are modified. The learning is completed when each radial center is
brought up as close as possible to each discrete cluster centers formed from the
input space and the error of the network’s output is within the desired limit
[32,34,67,68].

Inputs

Inpuni Hiddim Cmipmi
Laysr Layer Ly er

Figure 3-7: Architecture of radial basis function neural network.[68]
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3.8.3 Hopfield Neural Networks

Hopfield networks are the recurrent neural networks with no hidden units. The
idea of this type of network is to get a convergence of weights to find the
minimum value for energy function, just like a ball going down to the hill and
stops when energy is converted to other form due to friction and other forces.
Also it can be compared to the vortices in a river. Every neuron of the Hopfield
net is connected to all other neuron but not to itself, so that the flow is not in a
single direction. Even a node can be connected to itself in a way of receiving

the information back through other neurons [47,66,67].

3.9 APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN
CIVIL ENGINEERING

Over the last few years, the use of artificial neural networks (ANN) has
increased in many areas of engineering. Many researches in structural and
geotechnical engineering have been carried to use ANN in various topics,
among them were W.P. Dias and S.P. Pooliyadda [24]; Lai and Serra [46]; Lee
and Sterling [46]; W.M. Jenkins [25]; I.C. Yeh [27].

The following explains some of these researches:

3.9.1 ANN Applications in Structural Engineering

Andres et al predicted the confined compressive strength and corresponding
strain of circular concrete columns, the artificial neural networks (ANN) was
found to be acceptable in predicting the confined compressive strength and
corresponding strain of circular concrete columns. Also, the ANN model was

compared to analytical models and was found to perform well [38].
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Chao-Wei et al predicted the confinement efficiency of concentrically loaded
reinforced concrete (RC) columns with rectilinear transverse steel, ANN

approach provided better results compared with parametric models [39].

Mansour et al predicted the ultimate shear strength of reinforced concrete (RC)
beams with transverse reinforcements, the results show that ANN have strong
potential as a feasible tool for predicting this model, also the ANN model was
used to show that it could perform a parametric study to evaluate the effects of

some of the parameters on the chosen output [40].

Ashour and Algedra used a feed forward neural network model for evaluating
the concrete breakout strength of single cast-in and post-installed mechanical
anchors in tension. The relationship between the concrete breakout strength of
anchors and different influencing parameters obtained from the trained neural
networks were in general agreement with these of the ACI 318-02 for cast-in

and post-installed mechanical anchors [41].

Cladera and Mari developed an artificial neural network part | to predict the
shear strength of reinforced beams, based on its results. A parametric study
was carried out to determine the influence of each parameter affecting the

failure shear strength of beams without web reinforcement [43].

Cladera and Mari developed an artificial neural network part Il to predict the
shear strength of reinforced beams failing on diagonal tension failure, based on
its results, a parametric study was carried out to study the influence of each
parameter affecting the shear strength of beams with web reinforcement.
Finally new design expressions were proposed for both normal and high

strength concrete beams [44].
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Oreta developed an artificial neural network ANN model using past
experimental data on shear failure of slender (RC) beams without web
reinforcements, the ANN model performed well when compared with existing

empirical, theoretical and design code equations [45].

Hadi presented and discussed the applications of neural networks in concrete
structures especially applications in structural design. Based on the
applications, it is found that neural networks are comparatively effective for a
number or reasons, their ease of use and implementation, provide more
flexibility when users and developers deal with different kinds of problems
[36].

3.9.2 ANN Applications in Geotechnical Engineering

Artificial neural networks (ANN) have also been applied to many geotechnical
engineering tests and have demonstrated degrees of success. A review of the
literature reveals that ANN have been used successfully in pile capacity
prediction, modeling soil behavior, site characterization, earth retaining
structures, settlement of structures, slope stability, design of tunnels and
underground openings, liquefaction, soil permeability and hydraulic

conductivity, soil compaction, soil swelling and classification of soils[26].

Mohammed A. Shahin et al predicted settlement of shallow foundations using
neural networks. They used a large data base of actual measured settlements to
develop and verify the artificial neural network model. The predicted
settlements found by utilizing ANN are compared with the values predicted by
three of the most commonly used traditional methods. The results indicate that
ANN are a useful technique for predicting the settlement of shallow

foundations on cohesion less soils [22].
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Kurup et al evaluated the feasibility of using artificial neural network (ANN)
models for estimating the overconsilidation ratios (OCR) of clays from
piezocone penetration tests (PCPT), several models were used, comparing their
predictions with reference to OCR values obtained from odometer tests ANN

models give very good estimates of OCR [37].
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4. MODELING OF DEEP BEAMS USING ARTIFICIAL NEURAL
NETWORK

4.1 INTRODUCTION

This chapter deals with modeling of deep beams using artificial neural
networks. The reliability of the previous experimental test results used in this
research is studied. The preprocessing which applied on the collected

experimental test results is explained.

This chapter also presents the adopted training process to develop a trained
neural network model; the training process includes defining the topology of
the required neural network and identifying all neural network parameters. At
the end of this chapter, a comparison between predicted results from the trained
model, the experimental results, and results obtained using ACI 318-02

equations is presented.

4.2 DETAILS OF PREVIUOS EXPERIMENTAL TESTS

The development of neural network models needs as many reliable training
data as possible. The training data consists of those input parameters affecting
the system and the corresponding output parameters. These data can be
experiment test data, reliable empirical data or theoretical results. The current

research utilized experimental test results obtained from previous studies.

A comprehensive study was carried out on the obtained experimental test data

in order to ensure the adequacy of these data as a training data.
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It should be mentioned that all previous experiments used in this study have
identical test setup. The test setup of the previous experiments which

performed to predict the ultimate strength of deep beams is explained below.

Setup of Experimental Tests

A number of one hundred sixty one experiments carried out to predict the
ultimate shear strength of normal compressive strength of reinforced concrete
deep beams. These experiments were obtained from previous studies carried
out by De Paiva and Siess [79], Kong et al.[84], Kong et al.[85], Manuel et
al.[83], Ramakrishnan and Ananthanarayana [80], Rogowesky et al.[87], Smith
and Vantsiotis [81], Subedi et al.[82], Tan and Lu [54].

These experiments had concrete compressive strengths 7 in the range of
16.07N /mm* < f. < 45N [mm*, shear span a varies from 190 to 1760mm, beam

width b varies from 20 to 50mm, overall height of the beam # varies from
177.8 to 1750mm, the shear span to depth ratio a/k varies from 0.28 to 2, the

yield stress of the vertical web shear reinforcement f, varies from 0 to 520
N/mm?,and the yield stress of the horizontal web shear reinforcement f,,varies

from 286.83 to 520 N/mm?, see Table 4.1.

The study of the pervious experimental results indicated that the tested beams
showed different types of failures. In this study, those beams failed under shear
are kept for further processing. The tested beams failed under other types of

failures were excluded from this study.

The tested beams were subjected to two-point loading. This case provides a
larger amount of data than other cases do, which is essential for better training
of a network [7].

The geometrical dimensions and reinforcement of a typical RC deep beam

tested under two point loads is shown in Fig 4.1.
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Figure 4.1: Geometrical dimensions of a RC deep beam|8].

The parameters of the tested beams are the width of the beam (b), shear span
(@), shear span to depth ratio (a/h), depth of the beam (h), concrete compressive

strength (£.), yield stress of horizontal web reinforcement ( £,,), and yield

stress of vertical web reinforcement ( £,,).

Forty two high strength reinforced concrete deep beams were tested by Oh and
Shin [60], with concrete compressive strength in the range of

49.10MPa < f, <73.6MPa to determine their ultimate shear capacities
symmetrically under two-point loading. The effective span-depth ratio /,/d was

varied from 3.0 to 5.0, and the shear span-effective depth ratio a/d from 0.5 to
2.0. All the beams were singly reinforced with longitudinal steel reinforcement

ratio p, of 0.0129, 0.0156 and vertical shear reinforcement ratio o, from 0 to
0.0034, and horizontal shear reinforcement ratiop,, from 0 to 0.0094,

respectively, see Table 4.2.
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All beams had a rectangular cross section of either 120x 560mm or 130 X
560mm. Longitudinal steel reinforcement consisted of a straight bar with a 90
degree hook to provide adequate anchorage. Vertical shear reinforcement has
closed stirrups with 6mm bars, while the horizontal shear reinforcement
consisted of straight 6mm bars.

In beams with / /d of 3.0, 4.0, and 5.0, the effective span of specimen was

planed as 1500, 2000, and 2500mm, respectively, and the a/d was varied within
the effective span length. For the restraining of local failure, in the top
compressive face and support of tested beams, steel plates with widths of 180

and 130mm, respectively, were used.

The parameters of the tested beams are the beam width b, shear span —effective

depth ratio a/d, effective span- depth ratio /,/d , concrete compressive strength
f.vertical shear reinforcement ratiop,, horizontal shear reinforcement

ratio p, , and longitudinal steel reinforcement ratio p, .

4.3 SELECTION CRITERIA OF EXPERIMENTAL RESULTS AND
PRE-PROCESSING OF DATA

The way the data is presented to the neural network affects the learning of the
network. Therefore; a certain amount of data processing is required before

presenting the training pattern to the network [69].

A comprehensive study was carried out on the collected experimental data
results to choose the data which can be used in the training of a neural network
model. As the aim of this study is to predict the shear strength of deep beams,
the results of the deep beams failed under shear is kept while those results of
deep beams which showed other types of failures were excluded.
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After applying the above selection criteria a data base of 161 test results was
obtained for normal strength deep beams and 42 test results for high strength
concrete. These data will go through other selection and preprocessing stages to
obtain a reliable training data for neural network.

4.3.1 Statistics of Laboratory Experiments

The collected laboratory data were grouped randomly into three subsets :
a training set, validation set, and the testing set; see Table 4.1 and Table 4.2.
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A- Normal Strength Concrete

Table 4-1 shows the statistics of those testes carried on normal compressive strength

deep beams.
b h a a/h f S S V
mm  mm mm N/mm?2 N/mm? N/mm?2 (KN)
All data
No. of 161 161 161 161 161 161 161 161
data
Mean 97.89 510.66 416.44 0.866 25.31 249.05 383.18 473.80
Standard | 29.13 297.11 291.81 0.367 7.32 203.23 76.95 482.37
deviation
Minimum 20 177.8 190 0.28 16.07 0 286.83 943
Maximum | 50 1750 1760 2 49.1 520 520 3272
Testing
set
No. of 39 39 39 39 39 39 39 39
data
Mean 98.51 500.66 41754 088 25.18 253.81 381.82 451.94
Standard | 30.74 262.94 2.92.85 0.39 7.15 202.12 7557 416.20
deviation
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B- High Strength Concrete

Table 4-2: shows the statistics of those testes carried on high compressive strength deep
beams.

b ad led £  p=rv p=rh p=rt V
mm MPa % % %  MPa

All data

No. of data 42 42 42 42 42 42 42 42

Mean 12524 09 4 55.31 0.16 0.36 1.43 6.79

Standard 505 045 038 1037 0.09 0.22 0.14 2.32

deviation

Minimum 120 0.5 3 49.1 0.12 1.29 3.24 1.73

Maximum | 130 2.0 4 73.6 0.24 1.56 10.97 11.47

Testing

set

No. of data 10 10 10 10 10 10 10 10

Mean 12545 104 391 5167 0.13 0.43 1.44 6.18

Standard 522 046 030 1334 0.03 0.22 0.14 2.29

deviation
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4.3.2 Frequency of Experimental Data

Shi suggested that an ANN model might perform well over an entire space only
when the training data are evenly distributed in the space [86].

The distribution of each parameter across its range in the data base is examined
The frequency distribution of all parameters studied across the 161 normal
reinforced concrete compressive strength test results and cross the 42 high
reinforced concrete compressive strength test results are presented in Fig 4.2
and Fig 4.3.

A- Normal strength concrete
Frequency distribution of input parameters across the range of 161

experimental results are considered.
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Fig.4.2.a Width of the beam(mm)
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Figure 4-2: Frequency distribution of input parameters across the range of 161 test
results.
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The frequency distribution shown in Fig 4.2 (a) shows that 37.89% of the
beams tested had a width ranging from 40 to 80mm, 50.31% a width from 80 to
120mm, whereas only 11.8% of the beams tested had a width ranging from 120
to 200mm.

Fig 4.2 (b) shows that 53.4% of the beams tested had a depth ranging from 200
to 400mm, others had 46.58%.

Fig 4.2 (c) shows that 66.46% of the beams tested had a shear span ranging
from 200 to 400mm, others had 33.54%.

Fig 4.2 (d)shows that 45.96% of the beams tested had a shear span to depth
ratio ranging from 0.50 to 0.75, 45.34% a shear span to depth ratio from 0.75 to
1.0, whereas only 8.7% of the beams tested had a shear span to depth ratio
ranging from 1.0 to 1.25.

Fig 4.2 (e)shows that 24.22% of the beams tested had a concrete compressive
strength ranging from 10 to 20N/mm?, 50.9% a concrete compressive strength
from 20 to 30 N/mm?, whereas only 24.22% of the beams tested had a concrete

compressive strength ranging from 30 to 50 N/mmZ.

Fig 4.2 (f)shows that 36.64% of the beams tested had a yield stress of vertical
web reinforcement ranging from 0 to 50N/mm? 31.05% a yield stress of

vertical web reinforcement from 400 to 450 N/mm?, others had 32.3%.

Fig 4.2 (g)shows that 43.48% of the beams tested had a yield stress of
horizontal web reinforcement ranging from 250 to 350 N/mm?, 36.65% a yield
stress of horizontal web reinforcement from 400 to 450 N/mm?, others had
19.87%.
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As the shear span to depth ratio and concrete compressive strength the most
effective parameters as drawn from the literature review and they are

distributed evenly no need for excluding any data.

B- High strength concrete
Frequency distribution of input parameters across the range of 42 experimental

results are considered.
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Figure 4-3: Frequency distribution of input parameters across the range of 42 test
results.
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The frequency distribution shown in Fig 4.3 (a) shows that 47.62% of the
beams tested had a width ranging from 110 to 120mm, whereas 52.38% of the
beams tested had a width ranging from 120 to 130mm.

Fig 4.3 (b) shows that 33.33% of the beams tested had a shear span to effective
depth ranging from 0.5 to 0.75, 28.6% had a shear span to effective depth
ranging from 0.75 to 1.0, 28.6% had a shear span to effective depth ranging
from 1.25 to 1.5, and 9.5% had a shear span to effective depth ranging from
1.75t0 2.0.

Fig 4.3 (c)shows that 85.7% of the beams tested had a effective span- depth
ratio ranging from 3 to 4, and 7.1% had effective span- depth ratio ranging

from 4 to 5, 7.1% had a effective span- depth ratio ranging from 5 to 6.

Fig 4.3 (d) shows that 52.38% of the beams tested had a concrete compressive
strength ranging from 45 to 50MPa, 23.81% had concrete compressive strength
from 50 to 55 MPa, whereas 23.81% of the beams tested had a concrete

compressive strength ranging from 70 to 75 MPa.

Fig 4.3 (e) shows that 61.9% of the beams tested had a vertical shear

reinforcement ratio ranging from 0.1 to 0.2%, others had 38.1%.

Fig 4.3 (f) shows that 66.69% of the beams tested had a horizontal shear

reinforcement ratio ranging from 0.4 to 0.5%, others had 33.33%.

Fig 4.3 (g) shows that 47.62% of the beams tested had a longitudinal steel
reinforcement ratio ranging from 1.2 to 1.3%, 52.38% had longitudinal steel

reinforcement ratio from 1.5 to 1.6%.
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As the shear span to effective depth ratio, concrete compressive strength, and
longitudinal steel reinforcement ratio the most effective parameters as drawn
from the literature review and they are distributed evenly no need for excluding

any data.

44 MATLAB NEURAL NETWORK TOOLBOX

The neural network toolbox available in MATLAB Version 6.5 was used to
build the current neural network model. Neural network algorithms in
MATLAB Version 6.5 can be quickly implemented, and large-scale problems
can be tested conveniently. The ANN toolbox enables modeling the problem
using back propagation ANN, radial ANN and recurrent ANN with a wide
range of transfer functions, learning techniques, network architectures,

performance optimization and performance functions [41,70].

4.5 CONSTRUCTION OF ANN MODEL

By applying the mentioned selection and preprocessing criteria, it was thought
that a reliable training set of data was obtained. The following sections explain
the details of the training process which was followed in this research. The

validation of the developed neural network model is discussed.

4.5.1 Training Strategy of the ANN Model

It was decided to use a feed forward back propagation neural network after pre-
processing the data has been completed. Back propagation is the most
successful and widely used in civil engineering applications [40,41].
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Data Scaling
The first step in training is the data scaling.

Data scaling is an essential step for network training. One of the reason for pre-
processing the output data is that a sigmoid transfer function is usually used
within the network. Upper and lower limits of output from a sigmoid transfer
function are generally 1 and 0, respectively. Scaling of the inputs to the range

[-1, +1] greatly improves the learning speed, as these values fall in the region
of the sigmoid transfer function where the output is most sensitive to variations
of the input value. It is therefore recommended to normalize the input and
output data before presenting them to the network. Scaling data can be linear or
non-linear, depending on the distribution of the data. Most common functions

are linear and logarithmic functions [69].

A simple linear normalization function within the values of zero to one is:

st p)

Where S is the normalized value of the variable P, P_._and P__ are variable

min max

minimum and maximum values, respectively.

The function premnmx can be used to scale inputs and targets so that they fall

in the range [-1, 1]. The following code illustrates the use of this function.

[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);

net=train(net,pn,tn)

The original network inputs and targets are given in the matrices p and ft,
respectively. The

normalized inputs and targets, pn and tn, that are returned will all fall in the
interval [-1,1]. The vectors minp and maxp contain the minimum and

maximum values of the original inputs, and the vectors mint and maxt contain
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the minimum and maximum values of the original targets. After the network
has been trained, these vectors should be used to transform any future inputs
that are applied to the network. They effectively become a part of the network,
just like the network weights and biases [21].

The second step in training a feed forward network is to create the network

object. The function newff creates a feed forward network.

It requires four inputs and returns the network object. The first input is an R

by 2 matrix of minimum and maximum values for each of the R elements of
the input vector. The second input is an array containing the sizes of each layer.
The third input is a cell array containing the names of the transfer functions to
be used in each layer. The final input contains the name of the training function

to be used.

The third step is setting the training parameters :
a- The number of ‘epochs’(number of times that the whole set of patterns is
presented to the network) affects the performance of the network. This number
depends on many factors, of which the following are most important :

Number of training data,

Number of hidden layers,

Number of neurons in hidden layers,

Number of dependent output parameters[69].
b-Maximum permissible error.
c- The number of iterations for which the error becomes constant.

d-The training status is displayed for every show iteration of the algorithm.

Back propagation algorithm in MATLAB Version 6.5 recommends dividing
the data set into three sets: training, validation and testing sets.
The training set is used to gradually reduce the ANN error. The error on the

validation set is monitored during the training process. The validation set error
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will normally decrease during the initial phase of training, as does the training
set error [41,21].

However, when the network begins to over-fit the data, the error on the
validation set will typically begin to rise. When the validation set error
increases for a specified number of epochs, the training is stopped. The test set
is used as a further check for the generalization of the ANN, but do not have

any effect on the training.

In the present study, training data set comprises a half of all data entries, and
the remaining data entries are equally divided between the validation and
testing sets [41].

The final step is plotting the training progress and the correlation coefficient

urn

Fig 4.4 presents a flow chart showing the training process of artificial neural

networks.
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Flow chart showing the training process

Start

A 4

Choose a starting
number of hidden layers

A 4

Select a starting number of hidden
neurons in each hidden layer

\ 4

Train the network and
evaluate the performance of [* 7 \
the network

Is .
performance No - Add a hidden
acceptable? neuron

Figure 4-4: Flow chart showing the training process of ANN [ 77]

In Fig. 4.4. if the number of neurons in the first hidden layer is large or there is no

change in performance, add a new (second) hidden layer.
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4.6 TOPOLOGY OF THE DEVELOPED ANN

Two separate ANN models were trained: one for the normal strength concrete deep

beams, and the second for high strength concrete deep beams.

4.6.1 Normal Strength Concrete ANN Model.

There were seven input parameters; namely the width of the beam (b), shear
span (a), shear span to depth ratio (a/h), depth of the beam (h), concrete

compressive strength ( £.), yield stress of horizontal web reinforcement ( f£,,),
and yield stress of vertical web reinforcement ( ,,). The output parameter is

the shear strength ¥ (N/mm?).

After several trials and iterations using MATLAB tools the following topology

can be obtained for the normal concrete compressive strength deep beams.

The topology of the network is:

= Type of architecture : Multi-layer feed forward

= Number of layers (hidden + output): 3
Note :We do not count the input layer of source nodes because no computation
is performed there.

Table 4-3: Number of Used Neurons and Transfer Functions for Normal Strength
Concrete .

Layer Name Number of Neurons Transfer Function
First hidden layer 5 logsig
Second hidden layer 5 logsig
Output layer 1 purlin

= Training algorithm used: Back probation algorithm
= Number of epochs required for training: 5000
= Goal (Sum Squared Error SSE): 0.9
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The architecture of ANN model for normal strength concrete deep beams is

shown in Fig 4.5.

\\}\ <7/ N\

"\

%:;c';@»«» 72\

O B T

¢y N
“«\\V///\\

The input layer The first The second The output
hidden layer hidden layer layer

Figure 4.5: The architecture of ANN model for normal strength concrete deep beams.

4.6.2 High Strength Concrete ANN Model.

There were seven input parameters; namely the width of the beam (b), shear

span —effective depth ratio (a/d), effective span- depth ratio (Z,/d), concrete
compressive strength ( £.), vertical shear reinforcement ratio(p, ), horizontal
shear reinforcement ratio( o, ), and longitudinal steel reinforcement ratio( o, ).

The output parameter is the shear strength ¥ (MPa).

After several trials and iterations using MATLAB tools the following topology

can be obtained for the high concrete compressive strength deep beams.
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The topology of the network is:
= Type of architecture : Multi-layer feed forward
= Number of layers (hidden + output):3

Table 4-4: Number of Used Neurons and Transfer Functions for High Strength
Concrete .

Layer Name Number of Neurons Transfer Function
First hidden layer 5 logsig
Second hidden layer 5 logsig
Output layer 1 purlin

= Training algorithm used: Back probation algorithm
= Number of epochs required for training: 5000
= Goal (Sum Squared Error SSE): 0.9
The architecture of ANN model for high strength concrete deep beams is shown in

Fig 4.6.

The input layer The first The second The output
hidden layer hidden layer layer

Figure 4.6: The architecture of ANN maodel for high strength concrete deep beams.
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4.7 PERFORMANCE OF ANN

The performance of the trained neural networks was monitored during the

training process as the sum squared error (SSE) over all the training data. The

training process stops when any of the following criteria is satisfied:

= the maximum number of iterations (epochs) is reached;

= the performance has been minimized to the required target;

= the average training error level has reached a predetermined target

value;

= the performance gradient falls below a minimum value; the validation

set error starts to rise for a specified number of epochs [21,69,41].

4.7.1 Normal Strength Concrete

A statistical comparison between the ANN, the test result, and ACI code is presented

in Table 4.5. These statistical parameters show that the predicted shear strength using

the trained ANN method is in good agreement with the experimental results.

Table 4-5: Comparisons between the ANN, the test result, and ACI for Normal

Strength Concrete.

Mean Standard deviation
V oy (N/MmM?) 496.82 560.598
Viw (NfIMm2) 479.58 537.61
V ey (N/mm2) 703.46 474.37
Viea IV ann 1.04 0.278
Vs IV acr 2.78 9.05
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The progress of the training was examined by plotting the training, validation
and test sum squared errors, SSE, versus the performed number of iterations, as

presented in Fig. 4.7.

Performance is 1.85556, Goal is 0.9

Training-Blue Goal-Black Validation-Green Test-Red

10" | 1 | | 1 | 1 | |
0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs
Stap Training

Figure 4-7: Training progress of ANN

The results shown in Fig. 4.7 are fairly reasonable, since the test set error and
the validation set error have very similar characteristics and no significant

over-fitting has occurred.

To insure the adequacy of the trained neural network model the testing data
which has been taken randomly from the whole data is taken and trained
separately, these testing data were 39 deep beams for normal concrete

compressive strength.
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Fig. 4.8 gives comparisons of the shear strength from experiments and those
obtained from the trained neural network (a) for 161 training data set and (b)

for 39 testing data set only.

These comparisons show that the predicted shear strength using the trained
ANN is in good agreement with the experimental results. Overall, it could be
concluded that the trained neural networks were successful in learning the

relationship between the input and output data.
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Figure 4-8: Neural network shear strength (N/mm?) predictions (a)training data, (b)testing
set.
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4.7.2 High Strength Concrete

A statistical comparison between the ANN, the test result, and ACI code is presented
in Table 4.6. These statistical parameters show that the predicted shear strength
using the trained ANN method is in good agreement with the experimental

results.

Table 4-6: Comparisons between the ANN, the test result, and ACI for High Strength
Concrete.

Mean Standard deviation
V.o (MPQ) 6.445 2.34
Vw (MPa) 6.449 2.184
Ve, (MPa) 7.00 2.308
Vies IV any 1.002 0.169
View IV aca 1.228 0.192

To insure the adequacy of the trained neural network model, the testing data
which has been taken randomly from the whole data is taken and trained
separately, these testing data were 10 deep beams for high concrete

compressive strength.

Fig. 4.9 gives comparisons of the shear strength from experiments and those
obtained from the trained neural network (a) for 42 training data set and (b) for
10 testing data set only.

These comparisons show that the predicted shear strength using the trained
ANN is in good agreement with the experimental results. Overall, it could be
concluded that the trained neural networks were successful in learning the

relationship between the input and output data.
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Figure 4-9: Neural network shear strength (MPa) predictions (a)training data, (b)testing set.
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5. PARAMETRIC STUDY

The advantage of trained neural network models is that parametric studies can
be easily done by simply varying one input parameter and all remaining input

parameters are set to constant values [45].

Using neural networks technique, it will be possible to study the effect of all
parameters on the ultimate shear strength of deep beams using all test results
available in the literature at the same time; this may eliminate the inconsistency

and conflicting conclusions drawn by different researches [8].

The ultimate shear strength in deep beams is controlled by many parameters
specially, the width of the beam (b),shear span (a), shear span to depth ratio

(a/h), overall depth of the beam (h), concrete compressive strength ( f.), yield
stress of horizontal web reinforcement (f,,), yield stress of vertical web
reinforcement (£, ), effective span-depth ratio (/,/d), vertical shear
reinforcement ratio(p,), horizontal shear reinforcement ratio(p,), and

longitudinal steel reinforcement ratio( p, ).

67

www.manaraa.com



Parametric Study

The ACI 318-02 formulas takes into consideration the effect of some of these

parameters as shown in the following equations :

The normal shear resisting force ¥, of the of the plain concrete can be taken as

M V. .d
V,=(35-25—1)(1.94f.' +25000pw—"—)b,d <64 f.'b,d

V.d M, (5-1)

The force resisted by the shear reinforcement 7, :
[ [
4 |1+ % A, 11- V
Y i A Y ke VN R d
S P T R R BT Iy (5-2)

provided such that ¥ = ¢(v. + V)

In this chapter, the influence of these parameters on shear strength of deep
beams for both normal and high compressive strength concrete will be
discussed using the trained neural network, after that a relationship between the
ultimate shear strength predicted from the neural networks model versus the

parameter under consideration will be discussed.
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5.1 PARAMETRIC STUDY FOR NORMAL STRENGTH CONCRETE
DEEP BEAMS

Three cases will be studied to show the effect of each parameter on the chosen
output which is the shear strength, these cases are the lower, the average, and

the upper case.

Case 1 :The lower case
b= 70mm; h =350mm; a = 300mm; a/h = 0.50;
f,=20 N/mm?; £, =150 N/mm?; and f,, =330 N/mm’.

Case 2 :The average case
b= 98mm; h = 510mm; a = 415mm; a/h = 0.86;
£ =25 N/mm*; f, =250 N/mm?and f,, =380 N/mm’.

Case 3 : The upper case

b= 126mm; h =670mm; a = 515mm; a’/h = 1.22;

£, =30 N/mm?; £, =350 N/mm? and f,, =430 N/mm?,

Table 5.1 shows the variations of the input parameters which used in the ANN
model for normal strength concrete.

Table 5-1: Variations for normal strength concrete.

Parameter Variations
b (mm) 50 75 100 125 150 175 200
h (mm) 250 500 750 1000 1250 1500 1740
a(mm) 200 400 600 800 1000 1200 1400
a/h 0.25 0.5 0.75 1 1.25 15 1.75
£ N/mm? 15 20 25 30 35 40 45
f,, N/mm? 300 330 360 390 420 450 480
£, N/mm? 250 275 300 325 350 375 400
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5.1.1 The Shear span-Depth ratio.

It can be noted from Fig. 5.1 that the ultimate shear strength increases with
decreasing the shear span-depth ratio while other parameters constant.

In other words, it is clear that the shear strength is inversely proportional to the
shear span-depth ratio and has the most significant effect on the shear strength
of deep beams This result is in a good agreement with findings of other
researchers such as Smith, Goh, and Ashour [8,42,81].

—e—Case 1 —m— Case 2 —a—Case 3

900
800
700
600

b

500 ——y

400
300 \\
0 \

100 S

Predicted shear strength (KN)

Figure 5-1:Effect of shear span to depth ratio on shear strength.
Equation (5.3) shows the relationship between the predicted shear strength and
the shear span to depth ratio, it can be noted from equation (5.3) that a
parabolic relationship between the shear span- depth ratio and the predicted
ultimate shear strength, while in the ACI code this relationship does not exist.

V:az(%)z —al%Jrao (5-3)

Where : a,, a; and ag are coefficients have the following values:
a,= 119.7, a;=462.27,and ay=693.1
r=0.9999
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Fig 5.2 shows the relationship between shear span to depth ratio and the
predicted shear strength for three levels of concrete compressive strength,
while keeping all other input parameter constant as follows:

b= 98mm; h =510mm; a = 415mm; £, =250 N/mm?; and f,, = 380 N/mm?,

—e— fc=20MPa —8— fc=25MPa —&— fc=30MPa ‘

900
800
700
600
500
400
300
200
100

0

Predicted shear strength (KN)

0 0.5 1 1.5 2
a’h

Figure 5-2: Effect of shear span to depth ratio on shear strength.

The concrete compressive strength has no effect on the ultimate shear strength

when a/d > 1. and have a small effect when a/d < 1.
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5.1.2 The Concrete Compressive Strength.

It can be noted from Fig. 5.3 that the ultimate shear strength increases with

increasing the compressive strength of concrete while other parameters

constant. This is consistent with Smith and Goh [42,81]. Fig 5.3 shows also

that the increasing rate in the predicted shear strength is larger in case 3 than in

the other cases, which means that the other parameters are significantly

effective on the predicted value of shear strength.

—=a— Case 2 —&— Case 3

N

\\\.

o

o—ﬁa—/’/’/’/

Predicted shear strength (KN)
NS
o O
o o

10

20 30 40
Concrete compressive strength fc (MPa)

50

Figure 5-3:Effect of concrete compressive strength on shear strength .

Equation (5.4) shows the relationship between the predicted shear strength and

the concrete compressive strength.

ag=73.327 and n=0.5436

r’=0.9119

V:ao(fcl)n

(5-4)

Equation 5.4 means that the predicted strength is directly proportional with

approximately the square root of the concrete compressive strength.

Va\/f_cl
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Fig 5.4 shows the relationship between concrete compressive strength and the
predicted shear strength for three levels of shear span to depth ratio, while
keeping all other input parameter constant as follows:

b= 98mm; h =510mm; a = 415mm; £, =250 N/mm?; and f,, = 380 N/mm®,

‘ —e— a/h=0.50 —=— a/h=0.86 —a— a/h=1.22 ‘

1000
900
800
700
600
500
400
300 ——t—
200
100

0

Predicted shear strength (KN)

10 20 30 40 50
Concrete compressive strength fc (MPa)

Figure 5-4:Effect of concrete compressive strength on shear strength .

It is clear that the shear span to depth ratio has no effect on the predicted shear
strength when the concrete compressive strength is smaller than 35 MPa and
when the concrete compressive strength is larger than 35MPa the shear strength

increases with decreasing the shear span-depth ratio.
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5.1.3 The Yield Stress of Vertical Web Reinforcement.
It can be noted from Fig. 5.5 that the ultimate shear strength is slightly affected

by the yield stress of vertical web reinforcement .

—e— Case 1 —8— Case 2 —Aa—Case 3

900
800
700
600

300
200
100

0
250 300 350 400 450 500

Yield stress of vertical web reinforcement (MPa)

Predicted shear strength (KN)

Figure 5-5: Effect of yield stress of vertical web reinforcement on shear strength .

Equation (5.5) shows a linear relationship between the predicted shear strength
and yield stress of vertical web reinforcement.

V=af, +a, (5-5)
a;=0.2321 and ay=336.8
1’=0.9919
Equation 5.5 shows that the predicted shear strength is directly proportional
with the yield stress of vertical web reinforcement and the relationship between

them is linear.

v

74

www.manaraa.com



Parametric Study

5.1.4 The Yield Stress of Horizontal Web Reinforcement.

It can be noted from Fig. 5.6 that the ultimate shear strength is slightly affected

by the yield stress of horizontal web reinforcement .

—e— Case 1 —=8— Case 2 —A—Case 3
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300
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100
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Yeild stress of horizontal web reinforcement (MPa)

Predicted shear strength (KN)

Figure 5-6: Effect of yield stress of horizontal web reinforcement on shear strength.

Equation (5.6) shows the relationship between the predicted shear strength and

yield stress of horizontal web reinforcement.

V=a, (fyh )n (5-6)
2p=0.1473 and n=1.3067

¥=0.9314
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5.1.5 The Width of The Beam.
It can be noted from Fig. 5.7 that the ultimate shear strength increases with

increasing the width of the beam.

—e—Case 1 —8— Case 2 —a—Case 3

_. 900

€ 800 A

£ 700 //‘/
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0 50 100 150 200 250

Width of the beam b (mm)

Figure 5-7: Effect of the beam width on shear strength.

Equation (5.7) shows the relationship between the predicted shear strength and
the beam width.

V=ab’—ab+a, (5-7)

a>=0.0117, a;=0.9792,and ay=375.99

1=0.9974

Equation 5.7 shows that the predicted shear strength is directly proportional
with the width of the beam.
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5.1.6 The Shear Span.

It can be noted from Fig. 5.8 that the ultimate shear strength increases with
increasing the shear span of the beam. Fig 5.8 shows also that the increasing
rate is larger in case 3 than in the other cases, which means that the other
parameters are effective on the predicted value of shear strength.

—e— Case 1 —=— Case 2 —a—Case 3

900
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700 e
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400 — e

300 ———*
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100
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Predicted shear strength (MPa)

Figure 5-8: Effect of shear span on shear strength.

Equation (5.8) shows the relationship between the predicted shear strength and
the shear span.

V =a,a® -aa+a, (5-8)

a,=0.0001, a;=0.1349,and ay=330.47
1'=0.9822
Equation 5.8 shows that the predicted shear strength is directly proportional

with shear span.
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5.1.7 The Height of The Beam.

It can be noted from Fig. 5.9 that the ultimate shear strength increases with
increasing the height of the beam.

—e—Case 1 —8— Case 2 —&— Case 3

2000
1750 A
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1250
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750 /
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250 —

0
200 500 800 1100 1400 1700
Hight of the beam h (mm)

Predicted shear strength (KN)

Figure 5-9: Effect of height of the beam on shear strength.

Equation (5.9) shows the relationship between the predicted shear strength and
the height of the beam.

V =a,h®—ah+a, (5-9)

a,= 0.0004, a;=0.1789,and ay=320.83
=0.9979
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5.2 PARAMETRIC STUDY FOR HIGH STRENGTH CONCRETE
DEEP BEAMS

Three cases will be also studied to show the effect of each parameter on the
chosen output which is the shear strength, these cases are the lower, the
average, and the upper case .

Case 1 :The lower case

b= 124mm; a/d =0.8; /,/d =3.5; f. =45 MPa;

p,=0.12 %; p,= 0.2 %; and p, = 1.35 %.

Case 2 : The average case
b= 126mm; a/d =0.97; ./d=4; f. =50 MPa;
p,=0.16 %; p, = 0.36 %; and p, = 1.45 %.

Case 3 :The upper case
b= 128mm;a/d=1.14; ./d =4.5; £ =55 MPa;
p,=0.2%; p,=0.52 %; and p, =1.55 %.

Table 5.2 shows the variations of the input parameters which used in the ANN
Model for normal strength concrete.

Table 5-2: Variations for high strength concrete.

Parameter Variations

b (mm) 121 122 123 124 125 126 127
ald 0.5 0.6 0.7 0.8 0.9 1 1.1
Ild 3.5 3.7 3.9 4.1 4.3 45 4.7

f. MPa 40 45 50 55 60 65 70
p,=1V 0.1 0.15 0.18 0.22 0.26 0.3 0.34
p,=1h 0.2 0.3 0.4 0.5 0.6 0.7 0.8
p=1t 1.3 1.34 1.38 1.42 1.46 15 1.54
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5.2.1 The Shear span-depth ratio.

It can be noted from Fig. 5.10 that the ultimate shear strength increases with
decreasing the shear span-depth ratio while other parameters held constant, as
well as the ultimate shear strength is affected predominantly by a/d, this agrees
with Tan and Oh [54,60].

—e— Case 1 —a— Case 2 —a—Case 3
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Figure 5-10: Effect of shear span-depth ratio on shear strength.

Equation (5.10) shows the relationship between the predicted shear strength
and the shear span to effective depth ratio, it can be noted from equation (5.10)
that a parabolic relationship between the shear span- effective depth ratio and
the predicted ultimate shear strength. While in the ACI code this relationship

does not exist .

V=a, (%)2 -a, % +a, (5-10)

Where : a,, a; and ag are coefficients and
a,=11.377, a;=26.057,and ay=19.025
=0.9994
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Fig 5.11 shows the relationship between shear span to effective depth ratio and
the predicted shear strength for three levels of concrete compressive strength,

while keeping all other input parameter constant as follows:

b= 126mm; /d=4; £,=0.16 %; P5=0.36 %; and O =1.45%.

—e—fc=45MPa —» fc=50MPa —a— fc=55MPa

-
N

-
o
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&%‘Q

25 045 065 085 1.05 1.25 145
Shear span-depth ratio a/d

o)

Predicted shear strength (MPa)

c© N & O

Figure 5-11: Effect of shear span to effective depth ratio on shear strength.

From Fig 5.11 it is clear that the concrete compressive strength has almost a
constant effect on the predicted shear strength that the three cases are

approximately parallel to each other .
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5.2.2 Concrete Compressive Strength.

It can be noted from Fig. 5.12 that the ultimate shear strength increases with
increasing the compressive strength of concrete while other parameters held

constant, this agrees with Oh [60].

—&—Case 1 —8—Case 2 —A—Case 3
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Figure 5-12: Effect of concrete compressive strength on shear strength.

Equation (5.11) shows the relationship between the predicted shear strength
and the concrete compressive strength, it can be noted from equation (5.11)
that concrete compressive strength has a slight change on the shear strength in
the case of high concrete compressive strength, and a linear relationship is

found between concrete compressive strength and shear strength.

V=a,f. +a, (5-11)
a;=0.0374, and ay=2.9706
=0.9998
V oa f.
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Fig 5.13shows the relationship between concrete compressive strength and the
predicted shear strength for three levels of shear span to effective depth ratio,

while keeping all other input parameter constant as follows:

b= 126mm; [./d =4; ©,=0.16 %; P, =0.36 %; and O =1.45%.

—e—a/d=0.80 —a— a/d=0.97 —A—ald=1.14
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Concrete compressive strength fc (MPa)

Figure 5-13: Effect of concrete compressive strength on shear strength.

From Fig 5.13 it is clear that the shear span to effective depth ratio has
constant effect on the predicted shear strength, and the three cases are almost

constant.

It can be noted that in normal strength deep beams the ultimate shear strength
is directly proportional to the square root of the concrete compressive strength
as in the ACI code, while in high strength deep beams the ultimate shear

strength is directly proportional to the concrete compressive strength.
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5.2.3 The Effective span-depth ratio.

It can be noted from Fig. 5.14 that the ultimate shear strength increases with
decreasing the effective span-depth while other parameters held constant, also

the ultimate shear strength was slightly affected by I/d this agrees with Oh [60].

—e—fc=45MPa —8— fc=50MPa —a— fc=55MPa

m

Predicted shear strength (MPa)

o N b~ O 00 O

33 35 37 39 41 43 45 47 49
Effetive span-depth ratio

Figure 5-14 Effect of effective span-depth ratio on shear strength.

Equation (5.12) shows a linear relationship between the predicted shear strength and

the effective span to depth ratio.

V= al(%j +a, (5-12)

Where :
a;=-1.5309and ay=13.46
#=0.9971
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5.2.4 The Width of The Beam.

It can be noted from Fig. 5.15 that the ultimate shear strength increases with

increasing the width of the beam while other parameters held constant.

—e— Casel —8— Case 2 —Aa—Case 3
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Figure 5-15: Effect of width of the beam on shear strength.

Equation (5.13) shows a linear relationship between the predicted shear strength and

the width of the beam.

V=ab+a, (5-13)
Where :
a;=-0.2501and ay=-25.762
#=0.9725
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5.2.5 The Vertical Shear Reinforcement Ratio.

It can be noted from Fig. 5.16 that the ultimate shear strength increases slightly
with increasing the web vertical shear reinforcement ratio while other

parameters held constant, this agrees with Oh [60].
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Figure 5-16:Effect of vertical shear reinforcement ratio on shear strength.

Equation (5.14) shows a linear relationship between the predicted shear strength and

the vertical shear reinforcement ratio.

V=ayp, +a, (5-14)
Where :
a;=51278 and ay=4.7218
#=0.9636
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5.2.6 The Horizontal Shear Reinforcement Ratio.

It can be noted from Fig. 5.17 that the ultimate shear strength increases slightly
with increasing the web horizontal shear reinforcement ratio while other

parameters held constant, this agrees with Oh [60].
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Figure 5-17:Effect of horizontal shear reinforcement ratio on shear strength.

Equation (5.15) shows a linear relationship between the predicted shear strength and

the horizontal shear reinforcement ratio.

V=ap,+a, (5-15)
Where :
a;=1.9343 and ay=5.6682
=0.9416
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5.2.7 The Longitudinal Steel Reinforcement ratio .

It can be noted from Fig. 5.18 that the ultimate shear strength increases with
increasing the longitudinal steel reinforcement ratio, longitudinal steel
reinforcement ratio has higher effect on ultimate shear strength than predicted
vales using ACI code equations in deep beams with high strength concrete
[88].
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Figure 5-18: Effect of longitudinal steel reinforcement ratio on shear strength.

Equation (5.16) shows the relationship between the predicted shear strength and the

vertical shear reinforcement ratio.

V= _azpzz +tap, —a, (5_16)
Where :
a>=10.923, a;=50.117,and ay=43.051
=0.9922
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

The application of Artificial Neural Networks (ANN) to predict the ultimate
shear strengths of deep reinforced concrete (RC) beams with normal and high
compressive strength has been investigated in this thesis. An ANN model is
built, trained and tested using the available test data of 161 normal strength RC
deep beams and 42 high strength RC deep beams collected from the technical
literature.

The ANN model was used to perform parametric studies in order to evaluate
the effects of the variables of the deep beams on the ultimate shear strength

which is the chosen output parameter.

6.2 GENERAL CONCLUSIONS ON THE USE OF ANN

On the basis of results obtained in this study, important conclusions would be
summarized as follows:

1. The study has added another success for artificial neural networks to
predict the ultimate shear strength of deep beams for both normal and
high concrete compressive strength, as previous researchers showed.
The neural networks are powerful tools and have strong potential in
learning the relationship between the input and output parameters and

thus predicting outputs from new inputs.
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2. The ANN is capable of modeling nonlinear relationship between
different parameters such as the relation of deep beams, where the
critical factors include the strength of the concrete, the beam geometry,

and the steel reinforcement in the beam.

6.3 CONCLUSIONS ON THE USE OF ANN IN PREDICTNG SHEAR
STRENGTH OF DEEP BEAMS

The topology of the network for both normal and high strength concrete deep

beams has the following features:

1- The type of architecture used was the Multi-layer feed forward, four layers
where used the input layer containing 7 neurons, the first and second hidden
layers each contains 5 neurons while in the output layer there was 1 neuron.

The training algorithm used was back probation algorithm .

2- The average ratio of the experimental shear strength to the predicted shear
strength using ANN (¥, )y inena /(V) 8 1.04 for normal strength concrete,

whereas the average ratio of the experimental shear strength to predicted shear
strength from ACI 318-02(V, ).o imenat /), 18 278,

3- The average ratio of the experimental shear strength to the predicted shear
strength using ANN (¥, ) o et /(72 1 1.002 for high strength concrete,
whereas the average ratio of the experimental shear strength to predicted shear

strength from ACI 318-02(V, ) .o imenat /), 15 1:228.

4- The conclusions 2 and 3 proved that the developed neural network was
much successful in predicting the ultimate shear strength in deep beams than

the ACI 318-02 equations within the ranges of the training data.
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6.4 CONCLUSIONS OF THE PERFORMED PARAMETRIC STUDY

Using the current technique(ANN), it was possible to study the effect of each
of the influencing parameters on the ultimate shear strength of deep beams
using all test results available in the literature at the same time; this may
eliminate the inconsistency and conflicting conclusions drawn by different
researches.

The parametric study was conducted using the trained artificial neural

networks, the following conclusions may be drawn:

6.4.1 Normal Strength Concrete Deep Beams

» The ultimate shear strength increases with decreasing the shear span to
depth ratio, and has the most significant effect on the shear strength of
deep beams .

= The concrete compressive strength has a slight effect on the ultimate
shear strength when a/d > 1, and have a small effect when a/d < 1.

= The ultimate shear strength is directly proportional to the compressive
strength of concrete. The predicted shear strength is larger in case 3
than in the other cases, which means that the other parameters have a
significant effect on the predicted value of shear strength .

= The shear span to depth ratio has no effect on the predicted shear
strength when the concrete compressive strength is smaller than 35 MPa
and when the concrete compressive strength is larger than 35MPa the
shear strength increases with decreasing the shear span-depth ratio.

= The ultimate shear strength is slightly affected by the yield stress of
vertical and horizontal web reinforcement .

» The ultimate shear strength increases with increasing the width, the

shear span, and the height of the beam.
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6.4.2 High Strength Concrete Deep Beams

= The ultimate shear strength increases with decreasing the shear span-
depth ratio, the ultimate shear strength is affected predominantly by a/d.

» The ultimate shear strength increases with increasing the compressive
strength of concrete.

= In normal strength deep beams the ultimate shear strength is directly
proportional to the square root of the concrete compressive strength as
in the ACI code, while in high strength deep beams the ultimate shear
strength is directly proportional to the concrete compressive strength.

= The ultimate shear strength was slightly affected by I/d.

= The ultimate shear strength increases with increasing the width of the
beam .

» The ultimate shear strength increases slightly with increasing the web
vertical and horizontal shear reinforcement ratio.

= The ultimate shear strength increases with increasing the longitudinal
steel reinforcement ratio, the longitudinal steel reinforcement ratio has
higher effect on ultimate shear strength than predicted vales using ACI

code equations in deep beams with high strength concrete .

6.5 RECOMMENATIONS FOR FUTURE STUDIES

The current study showed very promising results in predicting the ultimate
strength of deep beams. However, the following points would be recommended

for future studies to support the findings of this study:

1- It is recommended to carry out neural network modeling using different
ANN types such as recurrent networks with various training algorithms
such as radial bases can be used.

2- It is recommended to utilize other artificial intelligence techniques such

as fuzzy logic or genetic programming.
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3- Compare the results of the developed ANN with other codes of practice
and techniques (Strut-and —Tie model).

4- Compare the results of the developed ANN with other results obtained
from nonlinear material model using Finite Element packages.

5- Obtain more training data from newly tested deep beams and add them
to the training data. This will improve the training process of the problem.
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APPENDIX A: DATABASE USED FOR THIS STUDY

Database used for normal strength reinforced concrete deep beams

Ref. Beam b h a* fc Vv fyv fyh
mm mm mm N/mm2 KN N/mm2 N/mm?2
1 De-Paiva G23S-11 50.8 330.2 203.2 24.55 179.70 0 315.1015
2 De-Paiva G23S-21 50.8 330.2 203.2 23.58 106.75 0 354.403
3 De-Paiva G24S-11 50.8 330.2 203.2 38.61 181.48 0 315.1015
4 De-Paiva G24S-21 50.8 330.2 203.2 36.13 100.52 0 354.403
5 De-Paiva G33S-11 76.2 2286 203.2 23.31 170.80 0 326.1335
6 De-Paiva G33S8-12 76.2 2286 203.2 19.93 169.02  220.64 326.1335
7 De-Paiva G338-21 76.2 2286 203.2 21.03 108.97 0 311.654
8 De-Paiva G338-31 76.2 2286 203.2 19.93 213.95 0 311.654
9 De-Paiva G338-32 76.2 2286 203.2 20.06 202.83 220.64 304.759
10 De-Paiva G34S8-11 76.2 2286 203.2 35.16 219.73 0 325.444
11 De-Paiva G34S-21 76.2 228.6 203.2 34.2 112.09 0 324.065
12 De-Paiva G43S-11 1016 1778 203.2 242 153.90 0 304.0695
13 De-Paiva G44S-11 1016 1778 203.2 36.96 167.24 0 330.2705
14 De-Paiva F2S1 50.8 330.2 203.2 33.92 192.60 220.64 317.17
15 De-Paiva F2S82 50.8 330.2 203.2 31.72 24510 220.64  308.896
16 De-Paiva F3S2 76.2 2286 203.2 24.34 122.80 220.64  326.823
17 De-Paiva F3S3 76.2 228.6 203.2 34.34 242.86 220.64  326.823
18 De-Paiva F4S1 1016 177.8 203.2 34.27 94.30 220.64 321.9965
19 De-Paiva F4S22 1016 1778 203.2 34.68 182.37  220.64  335.097
20 Kong(1970) 1-30. 76.2 762 254 22.13 477.72 280 286.83
21 Kong(1970) 1-25. 76.2 635 254 24.55 448.36 280 286.83
22 Kong(1970) 1-20. 76.2 508 254 21.24 378.97 280 286.83
23 Kong(1970) 1-15. 76.2 381 254 21.24 328.26 280 286.83
24 Kong(1970) 1-10. 76.2 254 254 21.65 178.81 280 286.83
25 Kong(1970) 2-30. 76.2 762 254 19.20 498.18 303 286.83
26 Kong(1970) 2-25. 76.2 635 254 18.62 448.36 303 286.83
27 Kong(1970) 2-15. 76.2 381 254 22.75 279.33 303 286.83
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28 Kong(1970) 2-10. 76.2 254 254 20.13 199.27 303 286.83
29 Kong(1970) 3-30. 76.2 762 254 22.55 552.44 0 286.83
30 Kong(1970) 3-25. 76.2 635 254 20.96 451.03 0 286.83
31 Kong(1970) 3-20. 76.2 508 254 19.24 415.44 0 286.83
32 Kong(1970) 3-15. 76.2 381 254 21.93 318.48 0 286.83
33 Kong(1970) 3-10. 76.2 254 254 22.62 172.58 0 286.83
34 Kong(1970) 4-30. 76.2 762 254 22.00 483.94 0 286.83
35 Kong(1970) 4-25. 76.2 635 254 20.96 402.10 0 286.83
36 Kong(1970) 4-20. 76.2 508 254 20.13 361.18 0 286.83
37 Kong(1970) 4-15. 76.2 381 254 21.99 218.84 0 286.83
38 Kong(1970) 4-10. 76.2 254 254 22.61 191.26 0 286.83
39 Kong(1970) 5-30. 76.2 762 254 18.55 478.60 280 286.83
40 Kong(1970) 5-25. 76.2 635 254 19.24 416.33 280 286.83
41 Kong(1970) 5-20. 76.2 508 254 20.14 345.16 280 286.83
42 Kong(1970) 5-15. 76.2 381 254 21.93 254.43 280 286.83
43 Kong(1970) 5-10. 76.2 254 254 22.55 155.68 280 286.83
44 Kong(1970) 6-15. 76.2 381 254 26.08 345.16 0 286.83
45 Kong(1970) 6-10. 76.2 254 254 25.10 196.60 0 286.83
46 Kong(1972) S-30 76.2 762 254 22.13 575.57 337.855  286.83
47 Kong(1972) S-25 76.2 635 254 21.24 562.67 337.855  286.83
48 Kong(1972) S-20 76.2 508 254 21.79 478.16  337.855  286.83
49 Kong(1972) S-15 76.2 381 254 27.65 415.89 337.855  286.83
50 Kong(1972) S-10 76.2 254 254 23.31 220.18 337.855  286.83
51 Kong(1972) D-30 76.2 762 254 2317 556.89 296.485  286.83
52 Kong(1972) D-25 76.2 635 254 23.79 539.10 296.485  286.83
53 Kong(1972) D-20 76.2 508 254 24.75 555.56 296.485  286.83
54 Kong(1972) D-15 76.2 381 254 27.65 473.27 296.485  286.83
55 Kong(1972) D-10 76.2 254 254 24.20 237.08 296.485  286.83
56 Manueletal Beamb 101.6 460 266.5 34.26815 569.344 0 409.563
57 Manueletal Beam6 101.6 460 266.5 37.43985 538.208 0 409.563
58 Manueletal Beam7 101.6 460 266.5 31.9928 600.48 0 409.563
59 Manueletal Beam8 101.6 460 266.5 38.8878 560.448 0 409.563
60 Manueletal Beam9 101.6 460 410 37.6467  378.08 0 409.563
103

www.manaraa.com




APPENDIX A: database used for this study

61 Manueletal Beam10 101.6 460 410 448175 329.152 0 409.563
62 Manueletal Beam11 101.6 460 410  37.16405 342.496 0 391.636
63 Manueletal Beam12 101.6 460 410  33.71655 342.496 0 409.563
64 Ram A1 76.2 381 216 0.00 0.00 0 320
65 Ram B1 76.2 381 216 0.00 0.00 0 320
66 Ram B2 76.2 508 216 0.00 0.00 0 320
67 Ram B3 78.7 572 216 0.00 0.00 0 320
68 Ram B4 78.7 762 216 0.00 0.00 0 320
69 Ram C1 76.2 381 216 0.00 0.00 0 320
70 Ram C2 78.7 508 216 0.00 0.00 0 320
71 Ram C3 76.2 572 216 0.00 0.00 0 320
72 Ram C4 78.7 762 216 0.00 0.00 0 320
73 Rogowsky BM1-1 200 1000 1000 26.1 1204 0 381
74 Rogowsky BM2-1 200 1000 1000 26.8 1500 0 381
75 Rogowsky BM1A-1 200 1000 1000 26.4 1200 0 368
76 Rogowsky BM1-15 200 600 1000 424 606 0 452
77 Rogowsky BM2-15 200 600 1000 42.4 696 0 452
78 Rogowsky BM1-2 200 500 1000 43.2 354 0 452
79 Rogowsky BM2-2 200 500 1000 43.2 370 0 452
80  Smith&Vantsiotis 0A0-44 101.6 355.6 304.8 20.48 279.07 0 437.4
81  Smith&Vantsiotis 0A0-48 101.6 355.6 304.8 20.93 272.22 0 437.4
82  Smith&Vantsiotis 1A1-10 101.6 355.6 304.8 18.69 322.48 437.4 437.4
83  Smith&Vantsiotis 1A3-11 101.6 355.6 304.8 18.03 296.68 437.4 437.4
84  Smith&Vantsiotis 1A4-12 101.6 355.6 304.8 16.07 282.45 437.4 437.4
85  Smith&Vantsiotis 1A4-51 101.6 355.6 304.8 20.55 341.87 437.4 437.4
86  Smith&Vantsiotis 1A6-37 101.6 355.6 304.8 21.06 368.16 437.4 437.4
87  Smith&Vantsiotis 2A1-38 101.6 355.6 304.8 21.68 348.99 437.4 437.4
88  Smith&Vantsiotis 2A3-39 101.6 355.6 304.8 19.75 341.16 437.4 437.4
89  Smith&Vantsiotis 2A4-40 101.6 355.6 304.8 20.34 343.83 437.4 437.4
90  Smith&Vantsiotis 2A6-41 101.6 355.6 304.8 19.13 323.81 437.4 437.4
91  Smith&Vantsiotis 3A1-42 101.6 355.6 304.8 18.41 322.04 437.4 437.4
92  Smith&Vantsiotis 3A3-43 101.6 355.6 304.8 19.24 345.43 437.4 437.4
93  Smith&Vantsiotis 3A4-45 101.6 355.6 304.8 20.82 357.09 437.4 437.4
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94  Smith&Vantsiotis 3A6-46 101.6 355.6 304.8 19.93 336.27 437.4 437.4

95  Smith&Vantsiotis 0B0-49 101.6 3556 368.3 21.68 298.02 0 437.4

96  Smith&Vantsiotis 1B1-01 101.6 355.6 368.3 22.06 294.90 437.4 437.4

97  Smith&Vantsiotis 1B3-29 101.6 355.6 368.3 201 287.12 437.4 437.4

98  Smith&Vantsiotis 1B4-30 101.6 3556 368.3 20.82 280.67 437.4 437.4

99  Smith&Vantsiotis 1B6-31 101.6 3556 368.3 19.51 306.69 437.4 437.4

100 Smith&Vantsiotis 2B1-05 101.6 3556 368.3 19.17 257.98 437.4 437.4

101 Smith&Vantsiotis 2B3-06 101.6 3556 368.3 19 262.43 437.4 437.4

102  Smith&Vantsiotis 2B4-07 101.6 3556 368.3 17.48 252.20 437.4 437.4

103  Smith&Vantsiotis 2B4-52 1016 355.6 368.3 21.79 299.80 437.4 437.4

104 Smith&Vantsiotis 2B6-32 101.6 355.6 368.3 19.75 290.45 437.4 437.4

105 Smith&Vantsiotis 3B1-08 1016 3556 368.3 16.24 261.54 437.4 437.4

106  Smith&Vantsiotis 3B1-36 1016 3556 368.3 20.41 317.90 437.4 437.4

107  Smith&Vantsiotis 3B3-33 101.6 3556 368.3 19 316.70 437.4 437.4

108 Smith&Vantsiotis 3B4-34 101.6 3556 368.3 19.24 310.03 437.4 437.4

109 Smith&Vantsiotis 3B6-35 101.6 3556 368.3 20.65 332.27 437.4 437.4

110 Smith&Vantsiotis 4B1-09 1016 355.6 368.3 171 306.91 437.4 437.4

111 Smith&Vantsiotis 0C0-50 1016 355.6 457.2 20.69 231.30 0 437.4
112 Smith&Vantsiotis 1C1-14 1016 355.6 457.2 19.24 237.97 0 437.4
113 Smith&Vantsiotis 1C3-02 101.6 355.6 457.2 21.89 246.86 0 437.4
114  Smith&Vantsiotis 1C4-15 1016 355.6 457.2 22.68 261.99 0 437.4
115 Smith&Vantsiotis 1C6-16 101.6 355.6 457.2 21.79 244 .64 0 437.4

116 Smith&Vantsiotis 2C1-17 101.6 355.6 457.2 19.86 248.20 437.4 437.4

117 Smith&Vantsiotis 2C3-03 101.6 355.6 457.2 19.24 207.28 437.4 437.4

118 Smith&Vantsiotis 2C3-27 1016 355.6 457.2 19.31 230.63 437.4 437.4

119  Smith&Vantsiotis 2C4-18 101.6 355.6 457.2 20.44 249.09 437.4 437.4

120  Smith&Vantsiotis 2C6-19 1016 355.6 457.2 20.75 248.20 437.4 437.4

121 Smith&Vantsiotis 3C1-20 1016 355.6 457.2 21.03 281.56 437.4 437.4

122 Smith&Vantsiotis 3C3-21 101.6 355.6 457.2 16.55 249.98 437.4 437.4

123  Smith&Vantsiotis 3C4-22 101.6 355.6 457.2 18.27 255.32 437.4 437.4

124  Smith&Vantsiotis 3C6-23 101.6 355.6 457.2 19 274 .44 437.4 437.4

125 Smith&Vantsiotis 4C1-24 101.6 355.6 457.2 19.58 293.12 437.4 437.4

126  Smith&Vantsiotis 4C3-04 101.6 355.6 457.2 18.55 257.09 437.4 437.4
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127  Smith&Vantsiotis 4C3-28 101.6 355.6 457.2 19.24 304.69 437.4 437.4
128 Smith&Vantsiotis 4C4-25 101.6 355.6 457.2 18.51 305.13 437.4 437.4
129  Smith&Vantsiotis 4C6-26 1016 355.6 457.2 21.24 318.92 437.4 437.4
130 Smith&Vantsiotis 0DO0-47 101.6 355.6 635 19.51 146.78 0 437.4
131 Smith&Vantsiotis 4D1-13 101.6 355.6 635 16.07 174.81 437.4 437.4
132 Subedietal 1A1 100 500 190 26 479 454 382
133 Subedietal 1A2 100 500 190 29.6 750 455 493
134 Subedietal 1B1 100 500 690 24.8 156 456 382
135 Subedietal 1B2 100 500 690 29.6 299 457 493
136 Subedietal 1C1 100 900 390 24.8 585 458 326
137 Subedietal 1C2 100 900 390 284 970 459 330
138 Subedietal 1D1 100 900 1290 36 247 460 326
139 Subedietal 1D2 100 900 1290 33.2 422 461 330
140 Subedietal 2A1 100 500 150 26 360 438 378
141 Subedietal 2A2 100 500 190 22.72 615 438 322
142 Subedietal 2C1 100 900 350 27.92 606 438 334
143 Subedietal 2D1 100 900 1290 34.72 180 438 334
144 Subedietal 2D2 100 900 1290 31.52 398 438 303
145 Subedietal "3E1" 50 500 333.5 41.6 180 21 479
146 Subedietal 4G1 100 900 395 41.6 1296 450 484
147 Subedietal 4G2 100 900 845 43.2 1121 444 484
148 Subedietal 4G3 100 900 395 432 1595 444 490
149 Subedietal 4G4 100 900 845 41.6 922 450 490
150 Tan&Lu 1-500-050 140 500 250 491 1700 0 520
151 Tan&Lu 1-500-075 140 500 375 42.5 1400 0 520
152 Tan&Lu 1-500-1 140 500 500 374 1140 0 520
153 Tan&Lu 2-1000-050 140 1000 500 31.2 1750 520 520
154 Tan&Lu 2-1000-075 140 1000 740 32.7 1300 520 520
155 Tan&Lu 2-1000-1 140 1000 1000 30.8 870 520 520
156 Tan&Lu 3-1400-05 140 1400 705 32.8 2350 520 520
157 Tan&Lu 3-1400-075 140 1400 1050 36.2 1900 520 520
158 Tan&Lu 3-1400-1 140 1400 1420 35.3 1600 520 520
159 Tan&Lu 4-1750-05 140 1750 880 42.6 3272 520 520
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160 Tan&Lu 4-1750-075 140 1750 1320 40.4 2480 520 520
161 Tan&Lu 4-1750-1 140 1750 1760 44.8 2000 520 520
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Database used for high strength reinforced concrete deep beams

No fc b le/d a/d rv rh rt Vn,test
MPa mm % % % MPa
1 49.1 130 4 0.5 0 0 1.56 9.88
2 491 130 4 0.5 0.12 0.43 1.56 10.97
3 49.1 130 4 0.5 0.22 0.43 1.56 10.86
4 49.1 130 4 0.5 0.34 0.43 1.56 10.9
5 49.1 130 4 0.85 0 0 1.56 6.17
6 49.1 130 4 0.85 0.12 0.43 1.56 7.51
7 491 130 4 0.85 0.22 0.43 1.56 7.02
8 491 130 4 0.85 0.34 0.43 1.56 6.47
9 491 130 4 1.25 0 0 1.56 519
10 49.1 130 4 1.25 0.12 0.43 1.56 5.34
11 49.1 130 4 1.25 0.22 0.43 1.56 5.86
12 49.1 130 4 1.25 0.34 0.43 1.56 6.19
13 491 130 4 2 0 0 1.56 1.73
14 491 130 4 2 0.12 0.43 1.56 3.24
15 491 130 4 2 0.22 0.43 1.56 3.65
16 49.1 130 4 2 0.34 0.43 1.56 3.62
17 49.1 130 3 0.5 0.12 0.43 1.56 11.47
18 49.1 130 3 0.85 0.12 0.43 1.56 8.15
19 49.1 130 3 1.25 0.12 0.43 1.56 5.81
20 491 130 5 0.5 0.12 0.43 1.56 10.8
21 491 130 5 0.85 0.12 0.43 1.56 8.73
22 491 130 5 1.25 0.12 0.43 1.56 5.58
23 50.67 120 4 0.5 0.13 0 1.29 5.79
24 50.67 120 4 0.5 0.13 0.23 1.29 6.63
25 50.67 120 4 0.5 0.13 0.47 1.29 8.17
26 50.67 120 4 0.5 0.13 0.94 1.29 7.58
27 50.67 120 4 0.85 0.13 0.47 1.29 6.54
108

www.manaraa.com



APPENDIX A: database used for this study

28 50.67 120 4 0.85 0.24 0.47 1.29 6.01
29 50.67 120 4 0.85 0.37 0.47 1.29 6.23
30 50.67 120 4 1.25 0.13 0 1.29 3.56
31 50.67 120 4 1.25 0.13 0.23 1.29 4.34
32 50.67 120 4 1.25 0.13 0.47 1.29 4.61
33 73.6 120 4 0.5 0.13 0 1.29 7.3
34 73.6 120 4 0.5 0.13 0.23 1.29 9.03
35 73.6 120 4 0.5 0.13 0.47 1.29 9.14
36 73.6 120 4 0.5 0.13 0.94 1.29 9.11
37 73.6 120 4 0.85 0.13 0.47 1.29 6.96
38 73.6 120 4 0.85 0.24 0.47 1.29 6.84
39 73.6 120 4 0.85 0.37 0.47 1.29 6.8
40 73.6 120 4 1.25 0.13 0 1.29 4.85
41 73.6 120 4 1.25 0.13 0.23 1.29 5.17
42 73.6 120 4 1.25 0.13 0.47 1.29 5.64
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APPENDIX B: MATLAB CODE

MATLAB code used to train the artificial neural networks model in this study.

clc

clear all

load data.mat;

%T3=Input matrix

%P3=0utput matrix

%RP3=Matrix contains max and min of input parameters
%RT3=Matrix contains max and min of output parameters
[P3n,minP3,maxP3,T3n,minT3,maxT3]=premnmx(P3,T3);
[RP3n,minRP3,maxRP3]=premnmx(RP3);
net=newff(RP3n,[5 5 1],{'logsig’,'logsig’,'purelin'},'trainb’,'learngdm’,'sse’);
net.trainParam.epochs=5000;

net.trainParam.goal=0.9;

net.trainParam.max_fail=200;

net.trainParam.mu_inc=2;

net.trainParam.mu_dec=0.02;
net.trainParam.mu_max=1e30;

net.trainParam.show=500;

[R,Q]=size(P3n);

litst=2:4.Q;

lival=4:4.Q;

litr=[1:4:Q 3:4:Q];

val.P=P3n(:,iival); val. T=T3n(:,iival);
test.P=P3n(:,iitst);test. T=T3n(:,litst);

P3tr=P3n(:,iitr); T3tr=T3n(:,iitr);

[net,tr3,Y 3,E3]=train(net,P3tr, T3tr,[],[],val test);
weightsll=net.iw{1,1};

biasl=net.b{1};
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loglog(tr3.epoch,tr3.perf,'-',tr3.epoch,tr3.vperf,’--',tr3.epoch,tr3.tperf,'-.");
legend(‘'Training',"'VValidation', Test',-1);

ylabel('Squared Error MSE");xlabel('Number of Epochs");
[Ninput3]=tramnmx(P3,minP3,maxP3);

[Noutput3]=sim(net,Ninput3);
[output3]=postmnmx(Noutput3,minT3,maxT3);
NUuANN3=T3'./output3’;

%Parametric study

load para-fcf.mat;

% a/h = 0.25,0.5,0.75,1.0,1.25,1.5,1.75 others constant
[outfcl]=tramnmx(fc1l,minP3,maxP3);
[Noutfcl]=sim(net,outfcl);
[Vfcl]=postmnmx(Noutfcl,minT3,maxT3);

subplot(3,2,1)
loglog(tr3.epoch,tr3.perf,'-',tr3.epoch,tr3.vperf,'--',tr3.epoch,tr3.tperf,'-.");
legend('Training','Validation',"Test',-1);

ylabel('Squared Error MSE");xlabel('Number of Epochs')

subplot(3,2,2)
plot(fcpa,Vfcl);
xlabel(‘fcl’);
ylabel('Vp");

% fc=15,20,25,30,35,40,45 others constant
[outfc2]=tramnmx(fc2,minP3,maxP3);
[Noutfc2]=sim(net,outfc2);
[Vfc2]=postmnmx(Noutfc2,minT3,maxT3);
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subplot(3,2,3)
plot(fcp,Vfc2);
xlabel(*fc2);
ylabel('Vp";

[outfc3]=tramnmx(fc3,minP3,maxP3);
[Noutfc3]=sim(net,outfc3);
[Vfc3]=postmnmx(Noutfc3,minT3,maxT3);

subplot(3,2,5)

plot(fcpa, Vfc3);

xlabel(*fc3');

ylabel("Vp");

subplot(3,2,6)
[m3,b3,r3]=postreg(output3, T3);
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